Sb-NQR study of impurity effect on novel superconductivity for PrOs₄Sb₁₂-La substitution effect-

M. Yogi¹, Y. Imamura¹, H. Kotegawa², G. -q. Zheng¹, Y. Kitaoka¹, D. Kikuchi³, H. Sugawara³, H. Sato³

- 1 Department of Physical Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
- 2 Department of Physics, Faculty of Science, Okayama University, Tsushima-naka, Okayama 700-8530, Japan
- 3 Department of Physics, Graduate School of Science, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan

We report superconducting characteristics for $PrOs_4Sb_{12}$ and La substituted $Pr_{1-x}La_xOs_4Sb_{12}$ (x=0.05) via the measurements of Sb nuclear spin-lattice relaxation rate $1/T_1$. In the previous study [1], it was shown that the $1/T_1$ in $PrOs_4Sb_{12}$ shows neither a coherence peak just below $T_c=1.85$ K nor a T^3 like power-law behavior observed for anisotropic HF superconductors with the line-node gap and hence $PrOs_4Sb_{12}$ looks like an isotropic HF superconductor. In order to gain further insight into whether the SC gap structure in $PrOs_4Sb_{12}$ belongs to a class of an anisotropic s-wave or an unconventional one without the line-node gap, we have measured $1/T_1$ for 5% La-substitution sample.

 $^{123}\mathrm{Sb}$ - $2\nu_Q$ for A satellite transition of the $Pr_{0.95}La_{0.05}Os_4Sb_{12}$ is observed at $f_s = 49.14MHz$ in addition to the main one at $f_0 = 49.93$ MHz (see the inset in Fig. 1). The satellite arises from the Sb nuclei with one La substitution for the nearest neighbor Pr sites. Note that the $1/T_1$ at the satellite differs from that of LaOs₄Sb₁₂, confirming that La atoms are adequately substituted for the Pr sites in $PrOs_4Sb_{12}$ without any trance for phase separation. Fig. 1 shows temperature dependencies of $1/T_1$ for the pure and 5%-La substituted samples. The result that no coherence peak in $1/T_1$ is observed just below T_c at either the satellite and the main sites demonstrates that $PrOs_4Sb_{12}$ is not an anisotropic s-wave superconductor. The $1/T_1$ at the main sites behaves as tracking the T dependence in $PrOs_4Sb_{12}$ besides the $1/T_1$ =const. behavior at low temperatures below T=0.3 K. These results suggest that the SC gap structure is not significantly affected by the impurity substitution, and the $1/T_1$ =const. behavior does not originate from spin fluctuations of inevitably presenting impurities.

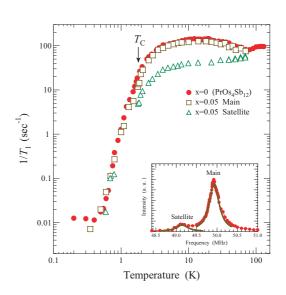


Figure 1: Temperature dependence of $1/T_1$ for $\text{PrOs}_4\text{Sb}_{12}$ and $\text{Pr}_{0.95}\text{La}_{0.05}\text{Os}_4\text{Sb}_{12}$. The inset shows the $^{123}\text{Sb-}2\nu_Q$ transition spectra for $\text{Pr}_{0.95}\text{La}_{0.05}\text{Os}_4\text{Sb}_{12}$.

[1] H. Kotegawa, M. Yogi, Y. Imamura, Y. Kawasaki, G. -q. Zheng, Y. Kitaoka, S. Ohsaki, H. Sugawara, Y. Aoki, and H. Sato, Phys. Rev. Lett. **90** (2003) 027001.