Fermi surface and magnetic properties of 5f-itinerant antiferromagnets UTGa₅ (T: Ni , Pd and Pt)

S. Ikeda^{1,2}, Y. Tokiwa^{1,2}, K. Kaneko², N. Metoki^{2,3}, T. D. Matsuda², Y. Haga², A. Galatanu², R. Settai¹ and Y. ŌNUKI^{1,2}

- 1 Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- 2 Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Naka, Ibaraki 319-1195, Japan
- 3 Department of Physics, Tohoku University, Aoba, Sendai 980-8578, Japan

UTGa₅ (T: Ni , Pd and Pt) has the HoCoGa₅-type tetragonal crystal structure (P4/mmm). We succeeded in growing the high-quality single crystal of UTGa₅ by the Ga self-flux method, and measured the magnetic susceptibility, neutron scattering and de Haas-van Alphen (dHvA) effect. From the dHvA experiment, it was clarified that the 5f-electrons are itinerant and Fermi surfaces consist of nearly cylindrical Fermi surfaces. The magnetic susceptibility showed a weak-temperature dependence and a small anisotropy, consistent with an itinerant character of the 5f electrons. We observed the antiferromagnetic ordering at 86K , 31K and 26K in UTGa₅(T : Ni , Pd and Pt), respectively. From the neutron scattering experiment, UPdGa₅ and UPtGa₅ are found to possess the same magnetic structure with Q = [0 , 0 , 1], and magnetic moments of 0.33 $\mu_{\rm B}$ /U and 0.24 $\mu_{\rm B}$ /U, respectively [1,2]. On the other hand, UNiGa₅ has a magnetic moment of 0.90 $\mu_{\rm B}$ /U with Q = [1/2 , 1/2 , 1/2] [1].

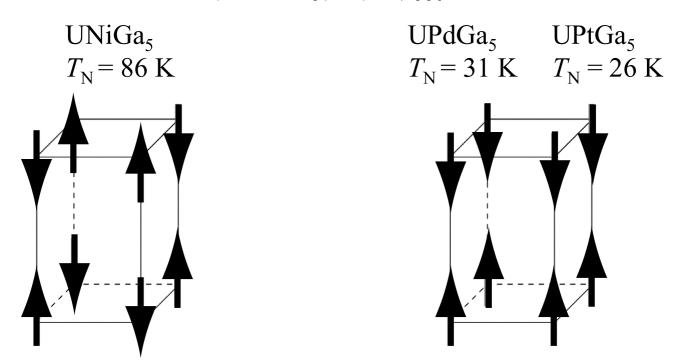


Figure 1: Magnetic structures in UNiGa₅, UPdGa₅ and UPtGa₅.

Y. Tokiwa, Y. Haga, N. Metoki, Y. Ishii and Y. Ōnuki, J. Phys. Soc. Jpn. 71 (2002) 725.
S. Ikeda, N. Metoki, Y. Haga, K. Kaneko, T D. Matsuda, A. Galatanu and Y. Ōnuki,
J. Phys. Soc. Jpn. 72 (2003) 2622.