(29b1)

Theory of Superconductivity in Heavy Fermion Systems

H. Ikeda and K. Yamada

Department of Physics, Kyoto University,

Sakyo-ku, Kyoto 606-8502, Japan

In this presentation, we show the results obtained within the third-order perturbation theory for superconductivity in some typical heavy fermion compounds. This approach has been useful in discussing the pairing symmetry and mechanism of superconductivity in high- T_c cuprates and Sr_2RuO_4 . Although the perturbation theory with respect to the on-site repulsion U is the approach from a weak correlation limit, we indicate here that it is valuable also for heavy fermion superconductors. It is important that the normal state above T_c is the Fermi liquid state with heavy electron mass, and the large mass enhancement factor does not have remarkable wave vector dependence as implied by the Kadowaki-Woods relation. In this case, we discuss superconductivity by starting with the renormalized quasi-particle picture. The obtained results are illustrated below.

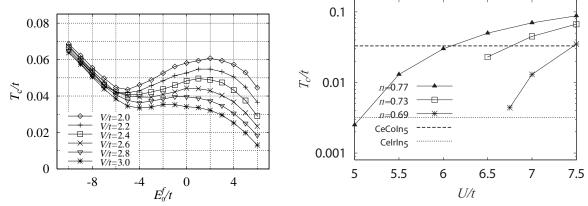


Figure 1: Left: f-level E_0^f dependence of T_c within the third-order perturbation theory in the periodic Anderson model for CeCu₂(Si,Ge)₂. Right: U dependence of T_c for some electron density n in the Hubbard model on the 2D square lattice. The tendency that T_c increases with increasing n is consistent with its x-dependence in CeIr_xCo_{1-x}In₅.

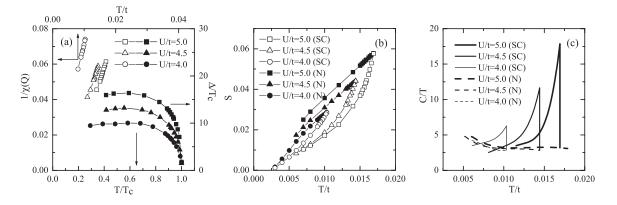


Figure 2: (a) Temperature dependence of $1/\chi(Q)$ and the magnitude of the gap function Δ/T_c . They are obtained within the fluctuation-exchange approximation. (b) The entropy S and (c) the specific heat C in the normal and the superconducting states. As U/t is larger, the superconductivity becomes the strong coupling, and the jump of C/T at T_c is enhanced. This is consistent with the large specific heat jump in CeCoIn₅.

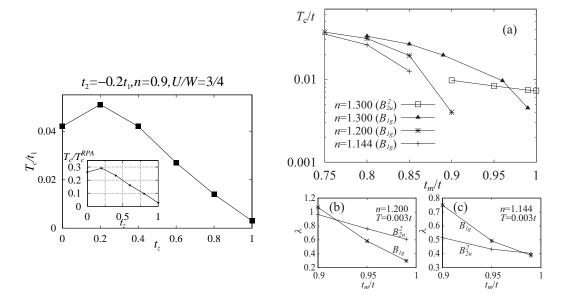


Figure 3: Left: t_z dependence of T_c/t_1 in the 3D cubic Hubbard model. In the inset, $T_c/T_c^{\text{RPA-like}}$ as a function of the anisotropy t_z . $t_z = 0$ and 1 correspond to 2D and 3D systems, respectively. T_c in 3D systems becomes one-order smaller than that in 2D systems. This tendency corresponds to difference of T_c between CeCoIn₅ and CeIn₃. Right: (a) T_c as a function of the distortion ratio t_m/t in the Hubbard model on a distorted triangular lattice. (b) and (c) illustrate, respectively, the eigen values λ of the Éliashberg equation for n = 1.200 and n = 1.144at T = 0.003t. $\Delta_{B_{1g}}$ (d_{xy} -wave singlet) is stable in a wide range of t_m/t , while $\Delta_{B_{2u}}^2$ (p-wave triplet) only in the vicinity of $t_m/t = 1$. Although the region of $\Delta_{B_{2u}}^2$ becomes wider as ndecreases, the transition temperature is suppressed abruptly. This can correspond to the fact that singlet pairing with line nodes in UPd₂Al₃ and triplet pairing in UNi₂Al₃ are realized.

[1] Y. Yanase, T. Jujo, T. Nomura, H. Ikeda, T. Hotta and K. Yamada, Phys. Rep. **387** (2003) 1