(29a2)

s-f Mixing and Effective Hamiltonian for Pr Skutterudites

H. Shiba¹, O. Sakai² and M. Koga³

- 1 Department of Physics, Kobe University, Kobe 657-8501
- 2 Department of Physics, Tokyo Metropolitan University, Hachioji 192-0397
- 3 Faculty of Education, Shizuoka Universiity, Shizuoka 422-8529

The Pr skutterudites PrT_4X_{12} (T=Fe, Ru, Os; X=P, As, Sb), in which the Pr ions are in the f^2 configuration, have many properties, which need to be clarified. They include the origin of heavy-fermion behavior and the metal-insulator transition, nature of quadrupolar order or mechanism of superconductivity. To understand those points from a microscopic viewpoint, one has to derive the interaction Hamiltonian of conduction electrons with f-orbitals of Pr ions. The purpose of this contribution is to present a progress report of our study along this direction.

The Pr skutterudites have a unique structure: each Pr ion is surrounded by 12 X atoms and the point group symmetry is $T_h[1]$. One promising crystal-level scheme appropriate for PrOs₄Sb₁₂ is the ground state Γ_1 and the first excited state $\Gamma_4^{(2)}$ forming a quasi-quartet[2, 3]. According to Harima and Takegahara[4], the conduction electrons consist mainly of the pnictogen *p* orbitals surrounding each Pr. The *f* states in the T_h field are classified into one Γ_1^- (a_u) and two Γ_4^- (t_u) orbitals; the *sf* mixing occurs with conduction electrons with the same symmetry.

Using our previous approach to U compounds[5] and $\text{CeB}_6[6]$, we have derived an effective interaction \mathcal{H}_{eff} due to the sf mixing within the second order. Some of the conclusions obtained so far are as follows:

(1) If one restricts conduction electrons to the a_u symmetry, no matrix element is present between the Γ_1 and $\Gamma_4^{(2)}$ crystal-field levels.

(2) \mathcal{H}_{eff} originating from the mixing of conduction electrons with the t_u symmetry gives finite matrix elements between Γ_1 and $\Gamma_4^{(2)}$ and has both magnetic and quadrupolar contributions.

(3) Because of the result of (2) it is very likely that magnetic fluctuations corresponding the transition between Γ_1 and $\Gamma_4^{(2)}$ may be equally important, although the importance of quadrupolar fluctuations is often emphasized in the literature.

- [1] K. Takegahara, H. Harima and A. Yanase: J. Phys. Soc. Jpn. 70 (2001) 1190
- [2] M. Kohgi et al.: J. Phys. Soc. Jpn. **72** (2003) 1002
- [3] R. Shiina and Y. Aoki: preprint
- [4] H. Harima and K. Takegahara: J. Phys. Condensed Matter 15 (2003) S2081
- [5] M. Koga and H. Shiba: J. Phys. Soc. Jpn. 64 (1995) 4345
- [6] H. Shiba et al.: J. Phys. Soc. Jpn. **68** (1999) 1988