(28d3)

Electronic states of a new antiferromagnetic superconductor $CePt_3Si$

<u>Y. Ōnuki</u>^{1,2}, S. Hashimoto¹, H. Shishido¹, T. Yasuda¹, T. Kubo¹, T. Ueda¹, T. Yamamoto¹, K. Kindo³, T. Takeuchi⁴, R. Settai¹, K. Sugiyama¹, T.D. Matsuda², Y. Haga², K. Kaneko² and N. Metoki²

- 1 Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- 2 Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Naka, Ibaraki 319-1195, Japan
- 3 Research Center for Material Science at Extreme Conditions, Osaka University, Toyonaka, Osaka 560-8531, Japan
- 4 Low temperature Center of Osaka University, Toyonaka, Osaka 560-0043, Japan

An antiferromagnet CePt₃Si with $T_N=2.3$ K was reported to become superconductive below 0.7 K at ambient pressure[1]. Surprisingly this compound is tetragonal, space group P4mm(No.99), without inversion symmetry in the crystal structure. We confirmed superconductivity in CePt₃Si and studied the fundamental properties.

Figure 1 shows the temperature dependence of the electrical resistivity in CePt₃Si and a non-4f reference compound LaPt₃Si. A faint resistivity peak is observed around 75 K in CePt₃Si. This might be based on a combined phenomenon of the crystalline electric field (CEF) and Kondo effects. If this temperature corresponds to $T_{\rm K}^{\rm h}$ in ref. [2], the Kondo temperature $T_{\rm K}$ is estimated as $T_{\rm K} = 130$ K from a relation of $T_{\rm K}^{\rm h3} = \Delta_1 \Delta_2 T_{\rm K}$, where $\Delta_1 = 12$ K and $\Delta_2 = 280$ K, obtained by the neutron scattering experiment[3], are splitting energies form the ground state of the 4f levels to the first and second excited levels, respectively. The relation is not applied to the resistivity in CePt₃Si.

We confirmed the Néel temperature 2.3 K, together with superconductivity below 0.7 K. We note that LaPt₃Si also becomes superconductive below 0.6 K.

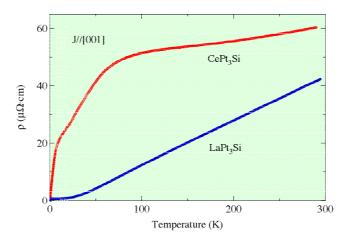


Figure 1: Temperature dependence of the electrical resistivity in $CePt_3Si$.

- [1] E. Bauer *et al.*, Cond-mat/0308083.
- [2] K. Yamada et al., Prog. Theor. Phys. 71 (1984) 450.
- [3] N. Metoki *et al.*, to be published.