Angle-resolved magnetization/specific-heat measurements on strongly correlated f electron compounds

T. Sakakibara, H. Aoki, T. Onimaru and T. Tayama

Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan

We have developed angle-resolved magnetization and specific-heat measurement techniques for investigation of anisotropic f electron systems such as quadrupolar ordering and anisotropic superconductivity. Here we present some new results on an antiferro-quadrupolar (AFQ) ordering compound PrPb_{3} and a d-wave superconductor CeCoIn_{5}.

The cubic compound PrPb_{3} has a Γ_{3} doublet ground state and is considered to show an AFQ ordering below $T_{\mathrm{Q}}=0.4 \mathrm{~K}$. In a simple model, the OP in a magnetic field is either O_{2}^{0} $(H \|[001])$ or $O_{2}^{2}(H \|[110])$ types, depending on the field direction. In order to confirm this point, we have been investigating the anisotropic phase diagram of PrPb_{3} by the angleresolved magnetization measurement. Preliminary results for H rotating in the (001) plane are shown in Fig1a. The transition temperature $T_{\mathrm{Q}}(H, \theta)$ is found to change smoothly, implying no discontinuous change of the OP within this plane. The $[001] \rightarrow[111] \rightarrow[110]$ rotation experiment will be done soon.
CeCoIn_{5} is an anisotropic superconductor with line nodes in the gap. Recent thermal conductivity measurement in rotating field has reported a fourfold gap symmetry in the $a b$-plane possibly of $d_{x^{2}-y^{2}}$ type. We have examined this issue by means of the specific heat measurement in rotating field. The field-orientation dependence of the specific heat $C(H, \theta)$ with H rotating in the $a b$-plane exhibits a clear fourfold angular oscillation in the superconducting mixed state (Fig.1b), directly proving the zero-energy density-of-state oscillation arising from the gap nodal structure of d-wave superconductivity [1]. Direction of the minima in $C(H, \theta)([100])$, however, points to a $d_{x y}$ gap symmetry in this system.

The work has been done in collaboration with D. Aoki, Y. Haga, H. Shishido, R. Settai and Y. Onuki.

Figure 1: (a) Field-angle variation of the AFQ transition temperature in PrPb_{3} with H rotating in the (001) plane. (b) Field-angle variation of the specific heat of CeCoIn_{5} with H rotating in the $a b$-plane.
[1] H. Aoki et al., preprint.

