(28d1)

Interplay of magnetism and superconductivity

J. Flouquet

IPMC Grenoble

 $\underline{\text{Magnetism and pressure :}} a single quantum critical point may be a dogma not the correct view.$

We extend our studies on the Kondo lattice CeRu_2Si_2 [1] to negative pressure where, at $P_C = .3$ GPa, the localized magnetism disappears. From P_C to $P_{KL} \sim P_C$ a phase separation occurs with the coexistence of antiferromagnetic (AF) and paramagnetic (Pa) phase. In these mixed states, the magnetic coherence length $\ell_{KL} \sim m*$ is finite with a nanoscale length of 100 Å [2]. Of course this implies first order transition; The physical picture is not at all of spin fluctuation but that of a Kondo lattice (KL) where the main mechanism is the longitudinal magnetic fluctuation coupled with atomic displacements. A Kondo condensate exists with lifetime $\tau_{KL} \sim m*^2$. The collective counterflow circulation of electron and hole induces a tiny ordered moment $M_o \sim m*^{-1}$. Of course, long range order (AF) or (S) superconductivity will lead to switch from an instable Kondo cloud to a coherent phase.

Kondo condensate and field orientation.

Under magnetic field, the pseudo-metamagnetic transition at H_M above P_C is the continuation of the critical end point of the metamagnetic transition observed for $P < P_C$. Below H_M , speculatar evidence of the orientation of the Kondo condensate may be given by its positive linear field magnetoresistivity which can be regarded as a longitudinal Hall effect. The Kondo condensate flow goes against the forced current. Similar effects may exist in a Nernst experiment [3]. Above H_M , the majority spin carrier will become slowly undressed while the minority spin carrier appears localized.

Superconductivity at negative pressure.

From dream to reality.

The negative pressure scenario of $CeRu_2Si_2$ seems to correspond to the $CeCoIn_5$ situation[5]. **Perspectives:**

- A single quantum critical point is an error, due to excessive theoretical focus to P_C . The real problem of quantum first order transitions will deliver new phenomena. - The Cooper pairing is due to the atomic displacement enhanced by the huge Grüneisen coefficient. - The feedback of the deformation to the nature of the magnetism and the Cooper pairing of the quasiparticles leads to a great diversity of the heavy fermion matter. - The two unconventional superconductors UPt₃ and PrOs₄Sb₁₂ are beautiful examples.

- [1] J. Flouquet et al, ICM Conference, Rome, (2003), to be published.
- [2] J. Flouquet, to be published in Prog. Low Temp. Phys. Ed. W. Halperin, Elsevier (2004).
- [3] R. Bel et al, to be published (2003). [4] J. Flouquet, to be published (2003).
- [5] G. Knebel, to be published (2003).