High-Pressure Synthesis and properties of New Lanthanide Metal Germanides

H. Fukuoka and S. Yamanaka

Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan

We have prepared new binary germanides of lanthanide metals by using high-pressure and high-temperature conditions. In La - Ge system, a new superconductor LaGe_{5} was obtained by the reaction of La and Ge mixtures with $\mathrm{La}: \mathrm{Ge}=1: 5$ under a pressure of 5 GPa at 1200 C.[1] The structure of this compound shown in Fig 1 (a) was determined by single crystal X-ray analysis. The space group and cell parameters are listed in Table 1. The structure is composed of sp^{3}-Ge buckled layers coupled by eight coordinated Ge atoms. Lanthanum atoms are situated in the Ge cages. Electrical resistivity and magnetic susceptibility measurements showed that the compound was a Type-II superconductor with a Tc of 7.0 K .

In the Ce-Ge system, two new germanides, CeGe_{5} with LaGe_{5} structure and CeGe_{3} with the $\mathrm{Cu}_{3} \mathrm{Au}$ structure have been obtained by high-pressure syntheses. Both compounds were metallic, but did not show superconductivity at $2 \mathrm{~K} . \mathrm{CeGe}_{3}$ showed ferromagnetic property with the Curie temperature of 5.0 K .

In Lu-Ge system, a new superconducting germanide, $\mathrm{LuGe}_{3-\delta}$ was obtained. The lattice constants and preparation condition are listed in Table 1. The $\mathrm{LuGe}_{3-\delta}$ had a layered structure composed of Ge layers, between which one dimensional Ge zigzag chains and Lu ions are situated as illustrated in Fig. 1(b). This compound showed superconductivity at 4 K .

Table 1 Crystallographic data and praparation conditions of new germanides

	structure type	S.G.	lattice constants (\AA)	conditions
LaGe_{5}	LaGe_{5}	Immm	$a=4.0290(6), b=6.307(1), c=9.978(2)$	$5 \mathrm{GPa} 1200{ }^{\circ} \mathrm{C}$
CeGe_{5}	LaGe_{5}	Immm	$a=4.000(1), b=6.188(2), c=9.854(1)$	$5 \mathrm{GPa} 1200{ }^{\circ} \mathrm{C}$
CeGe_{3}	$\mathrm{Cu}_{3} \mathrm{Au}$	Fm3m	$a=4.3547(6)$	$5 \mathrm{GPa} 1600^{\circ} \mathrm{C}$
$\mathrm{LuGe}_{3-\delta}$	YGe	Cmcm	$a=3.973(2), b=20.362(6), c=3.869(1)$	$5 \mathrm{GPa} 1200{ }^{\circ} \mathrm{C}$

(a)

(b)

Figure 1: Crystal structures of (a) LaGe_{5} and $\mathrm{LuGe}_{3-\delta}$.
[1] H. Fukuoka and S. Yamanaka, Phys. Rev. B 67 (2003) 094501.

