31 P NMR study of quadrupolar ordering and the field-induced heavy fermion state in $PrFe_4P_{12}$

- <u>J. Kikuchi</u>¹, M. Takigawa¹, H. Sugawara² and H. Sato³
- 1 Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
- 2 Department of Physics, Graduate School of Science, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan

We have measured ³¹P NMR in PrFe₄P₁₂ to investigate the quadrupolar-ordered and field-induced heavy-fermion states. Below the transition temperature T_A (= 6.5 K at zero field), field-induced splitting of the ³¹P NMR lines was observed for the magnetic-field (H) directions lying in the ($1\overline{10}$) and (001) planes. The splitting comes mainly from alternation of the hyper-fine coupling between P and Pr atoms, which evidences antiferro-quadrupolar ordering with a propagation vector $\mathbf{Q} = (1,0,0)$. The ³¹P nuclear spin-lattice relaxation rate $1/T_1$ decreases rapidly below T_A at low fields, indicating a nonmagnetic crystal-electric-field ground state. At high fields where the quadrupolar ordering is suppressed, marked anisotropy of $1/T_1$ was observed. $1/T_1$ with $\mathbf{H} \parallel [100]$ decreases as T^p at low temperatures (the power p depends on the field strength) and is systematically reduced at higher fields. On the other hand, $1/T_1$ is almost field-independent and remains large for $\mathbf{H} \parallel [111]$, showing T-independent behavior down to 1.5 K. The enhancement of $1/T_1$ for $\mathbf{H} \parallel [111]$ may be related to the enhanced magnetoresistence with this field configuration [1].

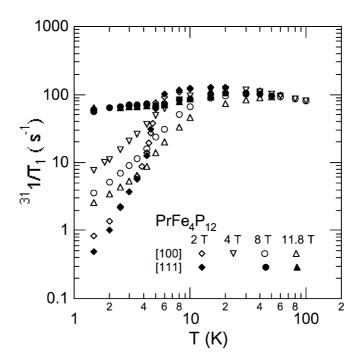


Figure 1: Temperature dependence of the ³¹P nuclear spin-lattice relaxation rate in PrFe₄P₁₂.

[1] H. Sugawara, E. Kuramochi, T. D. Matsuda, T. Namiki, Y. Aoki and H. Sato, Meeting Abstracts of the Physical Society of Japan **58**-1-3 (2003) 576.