Angle-Resolved Magnetization Measurements on Antiferroquadrupolar Ordering System PrPb_{3}

T. Onimaru ${ }^{1}$, T. Sakakibara ${ }^{1}$, A. Harita ${ }^{1}$, T. Tayama ${ }^{1}$, D. Aoki ${ }^{2}$ and Y. Ōnuki ${ }^{3}$
${ }^{1}$ Institute for Solid State Physics, University of Tokyo, Kashiwa, 277-8581
${ }^{2}$ Institute for Materials Research, Tohoku University, Sendai 980-8577
${ }^{3}$ Graduate School of Science, Osaka University, Toyonaka 560-0043

PrPb_{3} crystallizes in a simple AuCu_{3}-type cubic structure. Its CEF ground state is a Γ_{3} nonKramers doublet, which carries quadrupolar moments $O_{2}^{0}=\left(3 J_{z}^{2}-J^{2}\right) / 2$ and $O_{2}^{2}=\sqrt{3}\left(J_{x}^{2}-J_{y}^{2}\right) / 2$. One may therefore expect a quadrupolar ordering in PrPb_{3}. This compound actually exhibits a second-order transition at 0.4 K with a lambda-type anomaly in the specific heat, which is considered to be an antiferroquadrupolar (AFQ) ordering of Γ_{3}-type quadrupolar moments. Although extensive studies have been done on this system, the order parameter has not been established yet.

In this study, we examined the AFQ phase in PrPb_{3} by angle-resolved measurements of T_{Q}, which we believe to better reflect the symmetry of the order parameter. For this purpose, we developed a low-temperature angle-resolved magnetization measurement system. Figure 1 shows the result for the (001) rotation plane. Interestingly, T_{Q} takes a v-shape minimum along the [110] direction. We have performed a mean-field analysis based on a simple twosublattice model, and found that the result in Fig. 1 is incompatible with those obtained by assuming an isotropic AFQ interaction, and strongly suggests the existence of an anisotropic AFQ interaction that stabilizes the O_{2}^{0} phase or its equivalents in all directions in a wide field range [1]. We believe the existence of anisotropic quadrupole interaction is new for simple cubic systems.
[1] T. Onimaru, T. Sakakibara, A. Harita, T. Tayama, D. Aoki and Y. Onuki: J. Phys. Soc. Jpn. 73 No. 9 (2004), in press.

Figure 1: Field-angle dependence of the AFQ transition temperature T_{Q} in a field of 4 T rotated within the (001) plane. Dots are the experimental results. Solid (broken) line is the calculated result assuming anisotropic (isotropic) antiferroquadrupole interactions.

