## Electronic band structures of the filled skutterudites with ferromagnetic order

K. Takegahara<sup>1</sup>, D. Yamashita<sup>1</sup> and H. Harima<sup>2</sup>

<sup>1</sup>Dept. of Materials Sci. and Tech., Hirosaki University, Hirosaki, 036-8561

Band structure calculations for the ferromagnetic  $EuFe_4P_{12}$ ,  $EuFe_4Sb_{12}$  and  $EuRu_4Sb_{12}$  are carried out using the FLAPW method with the LSDA. We get the stable ferromagnetic solution for these compounds. The calculated results for  $EuFe_4Sb_{12}$  are shown in Figure 1.

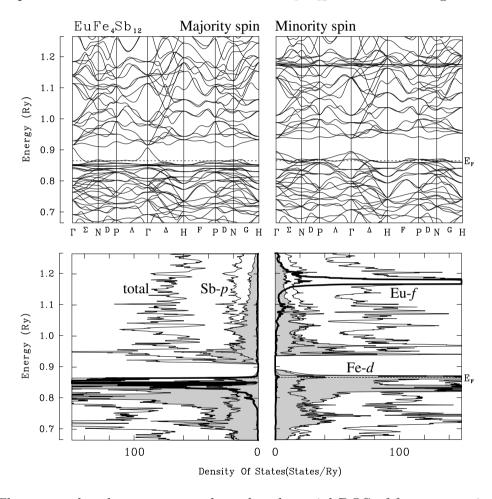



Figure 1: The energy band structures and total and partial DOS of ferromagnetic EuFe<sub>4</sub>Sb<sub>12</sub>.

Next we performed the spin-polarized calculations for alkaline earths-based filled skutterudites. The starting charge density was obtained by superposition of self-consistent charge densities for neutral atoms in which the Fe and Ru atoms are in the spin-polarized states; the electron configuration of Fe is  $\cdots 3d^54s^1$  (majority spin) and  $\cdots 3d^14s^1$  (minority spin), and Ru is  $\cdots 4d^55s^{0.5}$  (majority spin) and  $\cdots 4d^25s^{0.5}$  (minority spin).

For BaRu<sub>4</sub>Sb<sub>12</sub> and SrRu<sub>4</sub>Sb<sub>12</sub>, after several steps of the self-consistent iteration processes, the spin polarizations on Ru atom decreased rapidly. Therefore, the ferromagnetic ground state in BaRu<sub>4</sub>Sb<sub>12</sub> and SrRu<sub>4</sub>Sb<sub>12</sub> was considered to be unstable within the LSDA.

For BaFe<sub>4</sub>Sb<sub>12</sub>, we get the stable ferromagnetic solution. This is because the Fe 3d state has more localized character than the Ru 4d state and the Fe 3d levels of Fe-Sb skutterudite are the shallowest. We are now calculating the ferromagnetic band structures for SrFe<sub>4</sub>Sb<sub>12</sub> and CaFe<sub>4</sub>Sb<sub>12</sub>.

<sup>&</sup>lt;sup>2</sup>Department of Physics, Kobe University, Kobe, 657-8501