Elastic properties of PrOs₄Sb₁₂ M. Oikawa¹, Y. Nakanishi², T. Tanizawa², M. Yoshizawa², H. Sugawara³ and H. Sato⁴ ¹Department of Materials Science and Engineering, Iwate University, Morioka, 020-8551 ²Graduate School of Frontier Materials Function Engineering, Iwate University, Morioka, 020-8551 ³Faculty of Integrated Arts and Sciences, Tokushima University, Tokushima 770-8502 ⁴Graduate School of Science, Tokyo Metropolitan University, Hachioji, 192-0397 We have measured the elastic constant and ultrasonic attenuation of the filled skutterudite $PrOs_4Sb_{12}$ by means of ultrasonic measurement in the magnetic field up to 12T. A remarkable softening appeared at below about 20K in all the modes. The peak, probably caused by superconducting transition was observed at the ultrasonic attenuation of C_{44} around 4K. However, the position of a peak and the position of a transition point do not necessarily correspond correctly to those determined by other results such as specific heat and magnetization measurement. Fitting was performed about the results of the elastic constant $(C_{11}$ - $C_{12})/2$ and C_{44} in 3T using the CEF model in which the ground state was set as Γ_1 singlet. We will discuss the determined phase diagram and the origin of obtained ultrasonic attenuation. Figure 1: Temperature dependence of ultrasonic attenuation of C₄₄ of PrOs₄Sb₁₂