Non-magnetic Impurity Effect of Novel Heavy-Fermion Superconductor : An Sb-NQR Study of $Pr_xLa_{1-x}Os_4Sb_{12}$

<u>Y. Imamura</u>¹, M. Yogi¹, H. Kotegawa², G. -q. Zheng², Y. Kitaoka¹, D. Kikuchi³, H, Sugawara³ and H. Sato³

- ¹Department of Materials Science and Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
- ²Department of Physics, Faculty of Science, Okayama University, Tsushima-naka, Okayama, 700-8530, Japan
- ³Department of Physics, Graduate School of Science, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji, 192-0397

We report on nonmagnetic impurity effect of superconducting (SC) characteristics of $PrOs_4Sb_{12}$ via the measurements of Sb nuclear spin-lattice relaxation rate $1/T_1$ of $Pr_xLa_{1-x}Os_4Sb_{12}$. In the previous work [1], the $1/T_1$ in $PrOs_4Sb_{12}$ shows neither a coherence peak just beow $T_c=1.85$ K nor a T^3 like behavior observed for unconventional heavy-fermion (HF) superconductors with the line-node gap. It is well known that nonmagnetic impurity effect has shed further light on unique SC characteristics on HF supercondutors with the line-node gap, yielding finite density of states at the Fermi level. If the symmetry of SC order parameter were an anisotropic s-wave type, the gap structure would reveal a rather uniform full-gap structure averaged over a whole Fermi surface by impurity scattering. Therefore, the nonmagnetic impurity effect on the SC gap structure in $PrOs_4Sb_{12}$ was addressed through the measurement of $1/T_1$ on $Pr_xLa_{1-x}Os_4Sb_{12}$.

Fig.1 indicates the 123 Sb- $^{2}\nu_{\rm Q}$ transition spectrum at 4.2K and the temperature dependence of $1/T_1$ for $\Pr_x \text{La}_{1-x} \text{Os}_4 \text{Sb}_{12}$. As shown in Fig.1(a), two peaks were observed for site-1 and site-2 where the Sb₁₂ cage surrounds a guest La and a host Pr ions, respectively. Note that the respective $1/T_1$'s at the site-1 and site-2 differ from those of parent compounds $\text{LaOs}_4 \text{Sb}_{12}$ and $\text{PrOs}_4 \text{Sb}_{12}$ (shown in fig.1(b)), confirming that La atoms are randomly distributed over the Pr sites in $\text{PrOs}_4 \text{Sb}_{12}$ without any trance for phase separation. As shown in Fig.1(b), no coherence peak in $1/T_1$ was observed just below T_c at both sites. This result demonstrates that $\text{PrOs}_4 \text{Sb}_{12}$ is not of anisotropic s-wave.

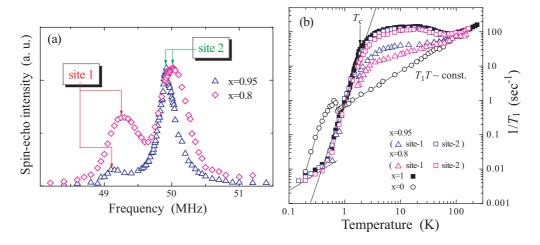


Figure 1: (a) The 123 Sb- $2\nu_{\rm Q}$ transition spectrum for $\Pr_x \text{La}_{1-x} \text{Os}_4 \text{Sb}_{12}$ (x=0.95, 0.8) at 4.2K. (b) Temperature dependence of $1/T_1$ for $\Pr_x \text{La}_{1-x} \text{Os}_4 \text{Sb}_{12}$ (x=1, 0.95, 0.8, 0).

[1] H. Kotegawa, M. Yogi, Y. Imamura, Y. Kawasaki, G. -q. Zheng, Y.Kitaoka, S. Ohsaki, H. Sugawara, Y. Aoki and H. Sato, Phys. Rev. Lett. **90** (2003) 027001.