Pressure effect for Metal-Insulator Transition in RRu_4P_{12} (R = Pr, Sm)

A. Miyake ¹, I. Ando ¹, T. Kagayama ^{1, 2}, K. Shimizu ^{1, 2}, C. Sekine ³, K. Kihou ³, I. Shirotani ³

- 1 Department of Materials Science and Engineering, Graduate School of Engineering Science; and
- 2 *KYOKUGEN*, Research Center for Materials Science at Extreme Conditions, Osaka University, Toyonaka, Osaka 560-8531, Japan
- 3 Faculty of Engineering, Muroran Institute of Technology, Mizumoto, Muroran 050-8585, Japan

The metal-to-insulator (M-I) transition was observed in filled skutterudite $PrRu_4P_{12}$ and $SmRu_4P_{12}$, which have transition temperature $T_{\rm MI}=62$ K and 16 K, respectively [1, 2]. We measured the temperature dependence of the electrical resistance, R, of $PrRu_4P_{12}$ and $SmRu_4P_{12}$ at temperature 0.1 to 300 K under high pressure up to 15 GPa. The semiconductor-like resistivity in $PrRu_4P_{12}$ below $T_{\rm MI}$ was suppressed with pressure, and this behavior is consistent with previous report [3]. The superconducting transition and some anomalies in the resistance were observed [4]. With increasing pressure, the R below $T_{\rm MI}$ of $SmRu_4P_{12}$ was markedly suppressed as shown in Fig. 1. Above 3.5 GPa, a peak and a kink of the R were observed at around $T_1=15$ K and $T_2=2$ K. Below T_2 , an increment of the R was observed. Pressure dependence of $T_{\rm MI}$, T_1 and T_2 is shown in Fig. 2. These temperatures are very sensitive with pressure. With increasing pressure, T_2 decreased and the increment of R was suppressed. It is unclear that the origin of anomaly of R below T_2 , however it may be suppressed with pressure. At higher pressure, we expect that $SmRu_4P_{12}$ shows superconducting transition.

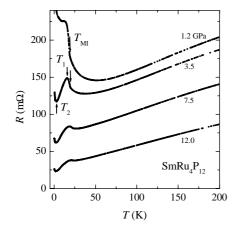


Fig. 1 Temperature dependence of the R at several pressures.

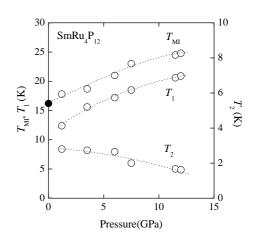


Fig. 2 Pressure dependence of T_{MI} , T_1 and T_2 .

- [1] C. Sekine et al., Phys. Rev. Lett. 79 (1997) 3218.
- [2] C. Sekine et al., Science and Technology of High Pressure, Universities Press, Hyderabad, India 2000, p.826.
- [3] I. Shirotani et al., Physica B **322** (2002) 408.
- [4] A. Miyake et al., to be published in JPSJ Letter.