NMR studies on a (Sm,La)Fe₄P₁₂ single crystal

N. Oki¹, T. Mito¹, S. Noguchi¹, S. Wada¹, N. Takeda², and M. Ishikawa³

Filled skutterudite compound SmFe₄P₁₂ is known to take a heavy-Fermion state below ~ 30 K followed by a ferromagnetic transition at 1.6 K [1]. In order to elucidate the electronic state microscopically, we have carried out NMR measurements of ³¹P in single crystals of Sm_{1-x}La_xFe₄P₁₂ with x=0 and 0.2. Fig. 1 (a) shows the T-dependence of the nuclear spin-lattice relaxation rate T_1^{-1} for the compounds with x=0, 0.2 (present work) and 1.0 (by Ishida et. al. [2]). For x=0 at low external field of H=0.23 T, T_1^{-1} exhibits four distinct T-dependences with decreasing T: near T-independent behavior above ~ 40 K (localized electron state), $T_1T=$ const. behavior for 8-30 K (Fermi liquid state), and an additional T-independent behavior below ~ 8 K followed by the rapid decrease below ~ 2 K associated with the ferromagnetic transition. It is worth noting that the additional T-independent behavior at low T is very sensitive to the strength of H.

The dilution of Sm ions in SmFe₄P₁₂ with La suppresses the ferromagnetic transition. Shown in Fig. 1 (b) is the change in the $(T_1T)^{-1}$ = const. values with the replacement of La for Sm observed in the Fermi-liquid state. The decrease in $(T_1T)^{-1}$ with increasing x indicates the decrease of the density of states at E_F .

[1] [2]

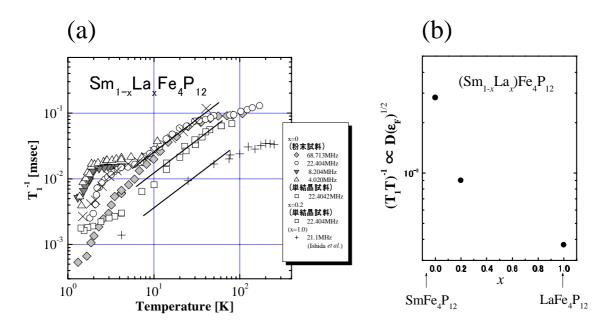


Figure 1: (a) The temperature and field dependence of $1/T_1$ in $Sm_{1-x}La_xFe_4P_{12}$ together with the data for $LaFe_4P_{12}$ [2]. (b) The $(T_1T)^{-1}$ = const. values are plotted against x.

¹Department of Physics, Kobe University, Kobe, Hyogo 657-8501

²Department of Materials Science and Technology, Niigata University, Niigata 950-2181

³Institute Solid State Physics, University of Tokyo, Kashiwa, Chiba, 277-8581