(30b2)

μ SR studies on filled skutterudite compounds

W.Higemoto¹, Y.Aoki², S.R.Saha³, K.Ohishi³, A.Koda³, K.Nishiyama³, R.Kadono³, A.Tsuchiya², H.Sanada², T.Kanayama², H.Sugawara⁴, H.Sato², E.Matsuoka⁵, K.Hayashi⁵ and T.Takabatake⁵

¹ASRC, Japan Atomic Energy Research Institute, Tokai, 319-1195
²Graduate School of Science, Tokyo Metropolitan University, Hachioji, 192-0397
³MSL, High Energy Accerelator Research Organization, Tsukuba, 305-0801
⁴Faculty of Integrated Arts and Sciences, Tokushima University, Tokushima 770-8502
⁵Dept. of Quantum Matter, Hiroshima University, Higashi-Hiroshima 739-8530

Filled skutterudite compounds shows much variety of the properties. We have carried out μ SR measurements on some filled skutterudite compounds at KEK-MSL to elucidate the magnetic and the superconducting properties.

(1)Substitution effect on unconventional superconductivity in $Pr_{1-x}La_xOs_4Sb_{12}$.

The unconventional superconductivity(SC) in $PrOs_4Sb_{12}$ has been attracting much attention. One of most important feature of the unconventional SC is the breaking of the timereversal symmetry (TRSB) which revealed by our previous μ SR measurement[1]. To confirm the role of a f-electron for the TRSB superconductivity, we performed μ SR measurement on a non-4f electron superconductor LaOs₄Sb₁₂. We observed temperature independent feature of zero-field relaxation rate above and below T_c . This fact indicate the absence of TRSB superconductivity in LaOs₄Sb₁₂ and provides convincing evidence for the 4f electrons playing an essential role for the realization of the TRSB superconductivity in PrOs₄Sb₁₂.

(2)Anomalous Ordered-phase in PrFe₄P₁₂

 $\Pr Fe_4P_{12}$ is first Pr-based heavy fermion compound and occur phase transition to ,most probably, an antiferro quadrupole(AFQ) state at $T_A=6.5$ K in zero field. We have measured zero field μ SR in $\Pr Fe_4P_{12}$ to confirm a non-magnetic ground state and investigate the muon spin relaxation phenomena in AFQ phase. In the ZF- μ SR, we observed absence of a static magnetic field below T_A . The upper bound of the magnetic moment is estimated as $\sim 10^{-3}\mu_B$ /Pr-ion. However, slowly fluctuating field is found and relaxation rate shows the small jump at 6.5K. Possible explanation is under consideration.

(3)Nearly ferromagnetic state in $AFe_4Sb_{12}(A=Sr,Ba)$

The itinerant ferromagnetism in alkali-metal filled skutterudite $AFe_4Sb_{12}(A=K,Na)$ exhibit the important role of 3d electrons in the physical property of filled skutterudite compounds. Recently, Matsuoka *et al* observed the ferromagnetic-like behavior in $AFe_4Sb_{12}(A=Sr,Ba,Ca)$ from some bulk property measurements[2]. They characterized both powder and spark plasma sintered samples and found some difference of the ferromagnetic state. To clarify the ferromagnetism, we carried out μ SR measurement in spark plasma sintered BaFe₄Sb₁2. We found that about 10% of the sample exhibit magnetism and other 90% still in paramagnetic phase. This feature suggest that BaFe_4Sb_{12} stand nearly ferromagnetic state and ferromagnetism is induced around a few numbers of defect and/or deformation.

[1]Y.Aoki et al. Phys. Rev. Lett. **91**(2003)067003.

[2]E.Matsuoka et al. 28a3 of this meeting