(30a4)

¹²¹Sb-NMR studies of single crystal PrOs₄Sb₁₂

<u>H. Tou</u>,¹ M. Doi,¹ M. Sera,¹ M. Yogi,² Y. Kitaoka,², H. Kotegawa,³ G. -q. Zheng,³ H. Harima,⁴ H. Sugawara,⁵ and H. Sato⁶

¹AdSM, Hiroshima University, Higahi-Hiroshima 739-8530, Japan

²Department of Physical Science, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan

³Department of Physics, Okayama University, Okayama 700-8530, Japan

⁴Department of Physics, Kobe University, Kobe 657-8501, Japan

⁵Faculty of Integrated Arts and Sciences, The University of Tokushima, Tokushima 770-8502, Japan

⁶Department of Physics, Tokyo Metropolitan University, Hachi-oji 192-0397, Japan

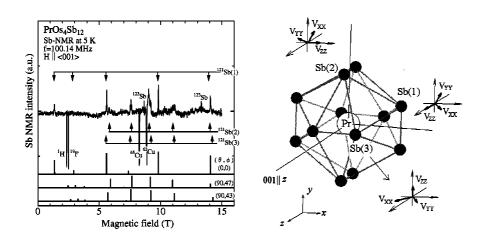

¹²¹Sb-NMR measurements were performed for a single crystal $PrOs_4Sb_{12}$ with typical dimensions of $2 \times 2 \times 3$ mm³ at fixed frequency of f = 100.14 MHz in the field range of 0-15 T.

Figure 1 shows the ¹²¹Sb NMR spectrum for a fixed frequency $f_0 = 100.14$ MHz in the paramagnetic state at 5 K for Hk < 001 > direction. Sb(1) NMR signals (Fig. 2) are explained by a nuclear quadrupole (eqQ) second order spectrum for $Hk < 001 > kV_{ZZ}$, where V_{ZZ} is the principal axis of a maximum electric field gradient (EFG). Other extra lines come from the different Sb(2,3) sites.

In order to assign the observed ¹²¹Sb NMR lines, the resonance fields were calculated by exact diagnalization of the 6×6 nuclear spin Hamiltonian matrix of ¹²¹Sb, by using the values, the quadrupole frequency $\nu_{\rm Q} = 44.143$ MHz, and asymmetry parameter $\eta = 0.46$ at T = 5 K [1]. The solid lines in Fig. 1 show calculated resonance fields for Hk < 001 >. The observed ¹²¹Sb NMR spectrum is well reproduced assuming the three different Sb sites for $H \ k < 001 >$ with different angle sets, $(\theta, \phi) - (0^{\circ}, 0^{\circ})$ for Sb(1), $(90^{\circ}, 47^{\circ})$ for Sb(2), and $(90^{\circ}, 43^{\circ})$ for Sb(3), where θ and ϕ are the polar angles of the applied field direction with respect to the EFG principal axes, (X, Y, Z). The principal axes for the EFG are determined as indicated in Fig. 2. These results agree well with the calculated EFG of Sb site by a FLAPW method based on LDA.

We also measured the Knight shift (KS) in the superconducting state for H// < 100 >. The KS does not change below T_c . The KS for H// < 110 > are now in progress.

[1] H. Kotegawa, et al, Phys. Rev. Lett. 90, 027001, (2003).

