(29c1)

Ultrasonic measurements of off-center oscillations in clathrate crystals $R_3Pd_{20}Ge_6$

<u>T. Yamaguchi¹</u>, Y. Nemoto¹, T. Goto¹, M. Akatsu², T. Yanagisawa¹, 3, O. Suzuki⁴, H. Kitazawa⁴, N. Takeda⁵, M. Ishikawa⁶

¹Graduate School of Science and Technology, Niigata University, Niigata 950-2181 ²National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568 ³University of California, San Diego, La Jolla, CA 92037-0319, USA

⁴National Institute for Materials Science, Tsukuba 305-0003

⁵Faculty of Engineering, Niigata University, Niigata 950-2181

⁶Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581

The ternary rare-earth compounds $R_3Pd_{20}Ge_6$ with the cubic C_6Cr_{23} structure with space group symmetry $Fm\bar{3}m$ have cages containing rare-earth ion. Guest atom in a cage vibrates between off-center positions. We have investigated two types of off-center oscillations 'rattling' and 'tunneling' in La₃Pd₂₀Ge₆ by ultrasonic measurement. The rattling means a thermally activated motion over the potential hill and the tunneling means a quantum mechanical motion through the potential hill. The transverse elastic constant C_{44} of $R_3Pd_{20}Ge_6$ (R = La, Ce [1] and Pr) shows a Debye-type dispersion around $10 \sim 30$ K. Similar ultrasonic dispersions was found in the $(C_{11} - C_{12})/2$ of a filled skutterudite $PrOs_4Sb_{12}$ [2]. Ultrasonic dispersion of $R_3Pd_{20}Ge_6$ is due to a Γ_5 rattling of guest atom in 4a-site cage between off-center positions along the threefold [111] axis. The relaxation time shows an activation-type temperature dependence $\tau = \tau_0 \exp(E/k_BT)$. Furthermore, C_{44} of La₃Pd₂₀Ge₆ being absent from 4f-electron shows a remarkable softening proportional to 1/T below 3 K down to 20 mK. This softening is probably caused by the off-center tunneling with Γ_5 symmetry of La ion at 4a-site cage. The off-center tunneling is a new type of quantum degrees of freedom, which may bring about exotic lowtemperature properties.

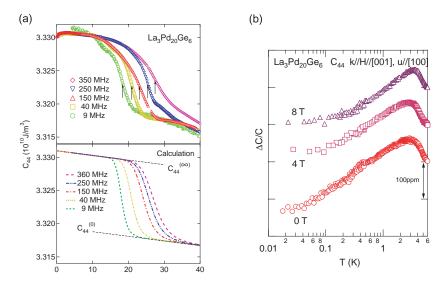


Figure 1: (a)Ultrasonic dispersion of C_{44} in La₃Pd₂₀Ge₆. (b)Elastic softening of C_{44} on La₃Pd₂₀Ge₆ in magnetic fields.

[1] Y. Nemoto, T. Yamaguchi, T. Horino, M. Akatsu, T. Yanagisawa, T. Goto, O. Suzuki,

A. Dönni, and T. Komatsubara, Phys. Rev. B 68 (2003) 184109.

- [2] T. Goto, Y. Nemoto, K. Sakai, T. Yamaguchi, M. Akatsu, T. Yanagisawa, H. Hazama,
- K. Onuki, H. Sugawara, and H. Sato, Phys. Rev. B 69 (2004) 180511.