(29b4)

Elastic properties of $SmRu_4P_{12}$ at low temperatures

<u>Y. Nakanishi</u>¹, T. Tanizawa¹, M. Yoshizawa¹, M. Oikawa², S. R. Saha^{3*}, T. Namiki^{3**}, H. Sugawara^{3***}, H. Sato³, C. Sekine⁴, I. Shirotani,⁴

 $^1{\rm Graduate}$ School of Frontier Materials Function Engineering, Iwate University, Morioka, 020-8551

²Department of Matyerials Science and Engineering, Iwate University, Morioka, 020-8551

³Graduate School of Science, Tokyo Metropolitan University, Hachioji, 192-0397

⁴Department of Matyerials Science and Engineering, Iwate University, Muroran, 050-8585

We have performed ultrasonic measurements on both poly and single crystalline samples of filled skutterudite compounds SmRu₄P₁₂ in the temperatures down to 500 mK and under the magnetic fields up to 14 T. A remarkable anomaly was observed in the temperature dependence of elastic constants and ultrasonic attenuation at metal-insulator transition temperature of 16 K. Furthermore, a significant elastic softening was observed in $(C_{11}-C_{12})/2$ and C_{44} below around 2 K. In this temperature region the system exhibits an insulating property. Thus we conjecture that this characteristic softening probably reflects on Γ_{67} quartet ground state. In fact, the level scheme of 4f electronic state of Sm⁺³: Γ_{67} quartet(0 K) - Γ_5 doublet(60 K) can reproduce successfully the present results. This indicates that orbital degree of freedom of 4f-ground state of Sm⁺³ still remain at low temperatures. We then suggest that the appealing hypothesis of antiferro-quadrupolar transition at 16 K is needed to be reconsidered.

Present address*: High Energy Accelerator Research Organization (KEK) 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

Present address**: Research Center for Materials Science at Extreme Conditions (KYOKU-GEN), Osaka University, Toyonaka 560-8531, Japan

Present address^{***}: Faculty of Integrated Arts and Sciences, The University of Tokushima, Tokushima 770-8502, Japan