³¹P-NMR and μ SR Studies of Sm T_4 P₁₂ (T= Fe, Ru and Os)

K. Hachitani¹, <u>Y. Kohori</u>^{1,2}, H. Fukazawa^{1,2}, Y. Yoshimitsu³, K. Kumagai³, I. Watanabe⁴, R. Giri⁵, C. Sekine⁵ and I. Shirotani⁵

¹Graduate School of Science and Technology, Chiba University, Chiba, 263-8522

 $\mathrm{Sm}T_4\mathrm{P}_{12}$ ($T=\mathrm{Fe}$, Ru and Os) have recently attracted much attention for the wide variety of the physical properties, such as the heavy fermion system and the metal-insulator transition, the antiferro-quadrupolar order and the magnetic order (ferro-/antiferro-magnetism). The electronic states of these compounds have been studied by the $^{31}\mathrm{P}$ -NMR and $\mu\mathrm{SR}$.

The spin-lattice relaxation rate $1/T_1$ of SmFe₄P₁₂ reported as the first Sm-based heavy fermion ferromagnet shows the heavy fermion behavior ($T_1T \sim \text{constant}$) below the Kondo temperature $T_{\rm K}=30~{\rm K}$ and the ferromagnetic fluctuations of the Sm moments above the Curie temperature $T_{\rm C}=1.6~{\rm K}$ (Fig. 1) [1,2]. In addition, the phase transition at zero field was comfirmed by means of the ZF- μ SR measurements at RIKEN-RAL muon Facility in UK. The internal field $\sim 650~{\rm Oe}$ was estimated from the muon spin precession observed in the ZF- μ SR spectra below the $T_{\rm C}$ (Fig. 2). In the ZF- μ SR measurements on SmOs₄P₁₂ reported as the antiferromagnet with the Néel temperature $T_{\rm N}=4.6~{\rm K}$ [3], the precession below the $T_{\rm N}$ was also observed, and the internal field $\sim 250~{\rm Oe}$ was estimated. On the contrary, the precession was not observed in the μ SR measuremets on SmRu₄P₁₂ reported to exhibit the metal-insulator transition at $T_{\rm MI}=16~{\rm K}$ which consists of two successive transitions, *i.e.* antiferro-quadrupolar order below 16 K and the antiferromagnetic order below 14K, respectively [4].

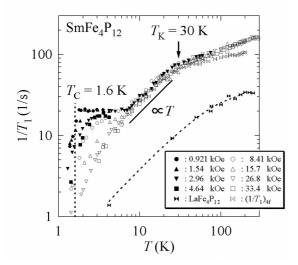


Fig. 1 Temperature T and applied magnetic field dependences of the spin-lattice relaxation rate $1/T_1$ of SmFe₄P₁₂.

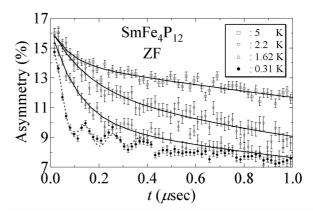


Fig. 2 Temperature dependence of the ZF- μ SR spectrum of SmFe₄P₁₂.

- [1] N. Takeda and M. Ishikawa: Physica B **329-333** (2003) 460.
- [2] K. Hachitani et. al: Journal of Magnetism and Magnetic Mterials (In Press).
- [3] R. Giri et. al: Physica B **329-333** (2003) 458.
- [4] C. Sekine et. al: Science and Technology of High Pressure, University Press, Hyderabad, India (2000) 826.

²Department of Physics, Faculty of Science, Chiba University, Chiba, 263-8522

³Graduate School of Science, Hokkaido University, Sapporo, 060-0810

⁴Advanced Meson Science Laboratory, RIKEN, Wako, 351-0198

 $^{^5\}mathrm{Department}$ of Electrical and Electronic Engineering, Muroran Institute of Technology, Muroran, 050-8585