(29b1)

Nuclear resonant scattering study on the local electronic state and lattice dynamics of filled Skutterudite compounds

<u>S. Tsutsui</u>¹, Y. Kazekami², J. Umemura², M. Sakata³, H. Kobayashi², H. Onodera³, C. Sekine⁴, I. Shirotani⁴ and Y. Yoda¹

¹Japan Synchrotron Radiation Research Institute, SPring-8, Mikazuki, Hyogo 679-5198 ²Graduate School of Materials Science, University of Hyogo, Kamigori, Hyogo 678-1297 ³Conductor School of Science Table Institute Science Microsoft 200, 8577

³Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8577

⁴Department of Electrical and Electronic Engineering, Muroran Institute of Technology, Muroran, Hokkaido 050-8585

Nuclear resonant scattering (NRS) is a Mössbauer spectroscopy using synchrotron radiation. NRS spectra provide not only local electronic states at probe nuclei but also local phonon density of states at probe atoms. The former ones are obtained by nuclear resonant forward scattering (NRFS), whereas the latter by inelastic nuclear resonant scattering (INRS). SmRu₄P₁₂ shows a metal-insulator (MI) transition at $T_{\rm MI} = 15$ K. The entropy at $T_{\rm MI}$ reaches $R \ln 4$. This suggests that an MI transition as well as a quadrupole ordering also occurs at $T_{\rm MI}$. [?] We have performed ¹⁴⁹Sm NRFS and INRS of SmRu₄P₁₂. Both measurements were carried out at BL09XU of SPring-8. The energy of x-ray is a ¹⁴⁹Sm Mössbauer resonance of 22.494 keV. A set of Si(4 4 0), Si(16 8 8) and Ge(4 4 2) is used as a high resolution monochrometer, whose resolution is 1.5 meV. The sample measured is a powdered polycrystalline one. Integrated signal of NRFS drops by one order at $T_{\rm MI}$ as temperature decreases. Quantum beats are observed only below $T_{\rm MI}$. On the other hand, no changes in INRS are observed across $T_{\rm MI}$. These results indicate that the local electronic state changes across $T_{\rm MI}$ at Sm atoms and the density of the local phonon states does not.

References

[1] K. Matsuhira *et al.*, J. Phys. Soc. Jpn., **71** Suppl.(2002) 237.