Pressure-induced metal-insulator transition in PrFe₄P₁₂

T. C. Kobayashi¹, H. Hidaka², H. Kotegawa¹, I. Ando³, H. Harima⁴, M. Kobayashi⁵, H. Sugawara⁶, H. Sato⁵

- 1 Faculty of Science, Okayama University
- 2 Graduate School of Natural Science and Technology, Okayama University
- 3 Graduate School of Engineering Science, Osaka University
- 4 Faculty of Science, Kobe University
- 5 Graduate School of Science, Tokyo Metropolitan University
- 6 Faculty of Integrated Arts and Sciences, Tokushima University

We have studied the electrical resistivity in the skutterudite compound $PrFe_4P_{12}$ under high pressure. An antiferro-quadrupoler ordering temperature, T_Q decreases monotonously with increasing pressure up to 2.4 GPa. However at 2.4 GPa, the increase of the resistivity (ρ) appears below T_Q . T_{MI} , where rapid ρ starts to increase, moves to higher temperature with increasing pressure; The metal-insulator (M-I) transition appears under high pressure. This M-I transition is suppressed easily by applying field. The observed Kondo effect and field-induced heavy-fermion state at high pressure suggest that the quadrupolar interactions survive even in the insulator phase.

In order to clarify the mechanism of M-I transition in this compound, further investigations are required. The NMR measurement will be powerful tool to investigate the relation between the quadrupole ordering and the M-I transition. The pressure dependence of carrier will be investigated by the Hall effect measurement. In addition to the study of PrFe₄P₁₂, the pressure-induced transition will be researched in other skutterudite compounds.

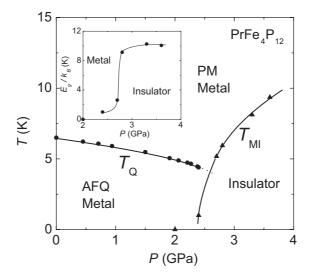


Figure 1: P - T phase diagram. Inset shows the pressure dependence of E_g / k_B .