Antiferro-quadrupole order and non-Fermi-liquid behavior in $\operatorname{PrFe} \mathbf{P}_{4} \mathbf{P}_{12}:{ }^{31} \mathbf{P}$ NMR

J. Kikuchi 1, M. Takigawa ${ }^{1}$, H. Sugawara ${ }^{2}$ and H. Sato ${ }^{3}$
${ }^{1}$ Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581
${ }^{2}$ Faculty of Integrated Arts and Sciences, Tokushima University, Tokushima 770-8502
${ }^{3}$ Graduate School of Science, Tokyo Metropolitan University, Hachioji 192-0397
We report on the results of ${ }^{31} \mathrm{P}$ NMR in $\mathrm{PrFe}_{4} \mathrm{P}_{12}$ which exhibits antiferro-quadrupole (AFQ) order below 6.5 K at zero field. From the analysis of the symmetry of dipolar and quadrupolar moments in the T_{h} crystal field, and using the NMR and neutron-diffraction data presently available [1], we propose that the AFQ order parameter (OP) is of Γ_{23} type. It is also suggested that the OP should be composed of both the independent quadrupoles O_{2}^{0} and O_{2}^{0} in order to give qualitative account for the nonmonotonous, site-dependent field variations of the NMR line splitting (Fig. 1). On the dynamics, the nuclear spin-lattice relaxation rate $1 / T_{1}$ exhibits remarkable anisotropy in the high-field heavy-fermion phase. For the field \mathbf{H} applied along $\langle 111\rangle$, we observed enhanced, almost temperature-independent $1 / T_{1}$ at low temperatures. The non-Fermi-liquid behavior of $1 / T_{1}$ may be related with either the quadrupolar Kondo effect [2] arising from near degeneracy of the T_{h} crystal-field levels for $\mathbf{H} \|\langle 111\rangle$, or existence of some ordered phase at lower temperatures found recently by the magnetization measurement [3].

Figure 1: (a) ${ }^{31} \mathrm{P}$ NMR spectra in $\mathrm{PrFe}_{4} \mathrm{P}_{12}$ with the field along [111] above and below the transition temperature. (b) Field dependence of the line splitting at 2 K with the field along [001]. The different symbols correspond to the three inequivalent P sites in magnetic fields above the transition temperature.
[1] L. Hao et al., Acta Phys. Polonica 34 (2003) 1113; K. Iwasa, unpublished.
[2] D. L. Cox, Phys. Rev. Lett. 59 (1987) 1240.
[3] T. Tayama, unpublished (28b1).

