(28a6)

Antiferro-quadrupole order and non-Fermi-liquid behavior in PrFe₄P₁₂: ³¹P NMR

J. Kikuchi¹, M. Takigawa¹, H. Sugawara² and H. Sato³

¹Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581

²Faculty of Integrated Arts and Sciences, Tokushima University, Tokushima 770-8502

³Graduate School of Science, Tokyo Metropolitan University, Hachioji 192-0397

We report on the results of ³¹P NMR in $PrFe_4P_{12}$ which exhibits antiferro-quadrupole (AFQ) order below 6.5 K at zero field. From the analysis of the symmetry of dipolar and quadrupolar moments in the T_h crystal field, and using the NMR and neutron-diffraction data presently available [1], we propose that the AFQ order parameter (OP) is of Γ_{23} type. It is also suggested that the OP should be composed of both the independent quadrupoles O_2^0 and O_2^0 in order to give qualitative account for the nonmonotonous, site-dependent field variations of the NMR line splitting (Fig. 1). On the dynamics, the nuclear spin-lattice relaxation rate $1/T_1$ exhibits remarkable anisotropy in the high-field heavy-fermion phase. For the field **H** applied along $\langle 111 \rangle$, we observed enhanced, almost temperature-independent $1/T_1$ at low temperatures. The non-Fermi-liquid behavior of $1/T_1$ may be related with either the quadrupolar Kondo effect [2] arising from near degeneracy of the T_h crystal-field levels for $\mathbf{H} || \langle 111 \rangle$, or existence of some ordered phase at lower temperatures found recently by the magnetization measurement [3].

Figure 1: (a) ³¹P NMR spectra in $PrFe_4P_{12}$ with the field along [111] above and below the transition temperature. (b) Field dependence of the line splitting at 2 K with the field along [001]. The different symbols correspond to the three inequivalent P sites in magnetic fields above the transition temperature.

- [1] L. Hao et al., Acta Phys. Polonica 34 (2003) 1113; K. Iwasa, unpublished.
- [2] D. L. Cox, Phys. Rev. Lett. **59** (1987) 1240.
- [3] T. Tayama, unpublished (28b1).