(PS9)

Photoemission spectroscopy of Ce-filled skutterudites

<u>M. Matsunami</u>¹, K. Horiba¹, K. Yamamoto¹, M. Taguchi¹, A. Chainani¹, Y. Takata¹, S. Shin^{1,2}, E. Ikenaga³, Y. Senba³, H. Ohashi³, H. Sugawara⁴, H. Sato⁵, H. Namatame⁶, M. Taniguchi⁶, D. Miwa¹, Y. Nishino¹, K. Tamasaku¹, T. Ishikawa^{1,3} and K. Kobayashi³

¹RIKEN/SPring-8, Mikazuki-cho, Hyogo, 679-5148

²Institute for Solid State Physics, University of Tokyo, Kashiwa, 277-8581

³JASRI/SPring-8, Mikazuki-cho, Hyogo, 679-5148

⁴Faculty of Integrated Arts and Sciencies, Tokushima University, Tokushima, 770-8502

⁵Graduate School of Science, Tokyo Metropolitan University, Hachioji, 192-0397

⁶HSRC, Hiroshima University, Higashi-Hiroshima, 739-8526

Ce-based compounds $\text{Ce}T_4\text{P}_{12}$ (T = Fe, Ru and Os) show semiconducting properties and have smaller lattice constants than those expected from trivalent lanthanide contraction. This fact may indicate that Ce 4f states in $\text{Ce}T_4\text{P}_{12}$ have strong hybridization with conduction (c) electron states and have an intermediate valence. Therefore, the energy gap in $\text{Ce}T_4\text{P}_{12}$ can be regarded as a c-f hybridization gap[1].

In order to gain an experimental evidence for strong hybridization in CeT_4P_{12} , we have performed the photoemission spectroscopy on $CeFe_4P_{12}$ using hard x-ray (5.94 keV) at SPring-8. Since the escape depth of photoelectrons becomes longer with increasing photon energy for excitation, a hard x-ray photoemission spectroscopy is very important to investigate the bulk electronic structure. Recently, this method has been applied to the f electron system including valence transition compounds $EuNi_2(Si_{0.2}Ge_{0.8})_2[2]$ and YbInCu₄[3]. These results were confirmed the consistency with their bulk properties.

Ce 3d core level photoemission spectra of $CeFe_4P_{12}$ show typical three peak structures attributed to f^0 , f^1 and f^2 final state. With increasing excitation energy from soft to hard xray, a significant enhancement of f^2 peak intensity is observed. Since f^2 final state is caused by charge transfer screening of the core hole from the valence band to 4f states, f^2 peak intensity is considered as an indication of c-f hybridization. Therefore, this result indicates that the c-f hybridization of CeFe₄P₁₂ is intrinsically strong, in accord with the prediction by band calculation[1].

References

- [1] L. Nordstrom et al., Phys. Rev. B 53 (1996) 1103.
- [2] K. Yamamoto et al., J. Phys. Soc. Jpn. 73 (2004) 2616.
- [3] H. Sato et al., Phys. Rev. Lett. **93** (2004) 246404.