(PS6)

Internal parameter dependence of electronic band structure for CoAs₃

K. Takegahara¹ and H. Harima²

¹Dept. of Materials Sci. and Tech., Hirosaki University, Hirosaki, 036-8561 ²Department of Physics, Kobe University, Kobe, 657-8501

The filled skutterudite RT_4X_{12} (R= rare earth; T = Fe, Ru and Os; X = P, As and Sb) crystallizes in a unique BCC structure of a space group Im $\overline{3}$ (T_h^5 , # 204). The atom positions are the following: R in 2a: (0, 0, 0), T in 8c: (1/4, 1/4, 1/4) and X in 24g: (0, u, v). The six X atoms form an octahedral environment for the T atom and the twelve X atoms an icosahedral environment for the R atom.[1]

In order to investigate the internal parameters u and v dependence of the electronic band structure, the binary skutterudite $T'X_3$ (T' = Co, Rh, Ir) is suitable because the R sites are empty. We have calculated the band structure of CoAs₃ for three hypothetic cases and one real case. The lattice constant (a = 8.195 Å) and the nearest neighbor distance (2.334 Å) between Co and As atoms are fixed as those of observed values.[2]

- A) Ideal octahedral case, u 2uv = 3/8 v. (u = 0.3275 and v = 0.1377.)
- B) Experimentally observed values, u = 0.3431 and v = 0.1503.[2]
- C) Oftedal's relation case, u + v = 1/2. The short edge of icosahedron 2v is equal to the first nearest neighbor distance of inter-icosahedron (1 2u). (u = 0.3465 and v = 0.1535.)
- D) Symmetrical case of A about the Oftedal's line, $u = 1/2 v_A$ and $v = 1/2 u_A$. (u = 0.3623 and v = 0.1725.)

We show the resultant band structures in the vicinity of the Fermi level $E_{\rm F}$ in Fig.1.

Figure 1: The FLAPW band structures of $CoAs_3$ for cases $A \sim D$.

In Figure 1, the Γ_5^- state marked by oval consists mainly of the a_u molecular orbital from the As p states at each corner of the As₁₂ icosahedron.[3] As decreasing the inter-icosahedron distance (from case A to D), the energy of Γ_5^- state increases gradually due to increase of the two-center integral for the As₁₂ p molecular orbitales.

[1] W. Jeitschko and D. Braun: Acta Cryst. B33 (1977) 3401.

- [2] N. Mandel and J. Donohue: Acta Cryst. B27 (1971) 2288.
- [3] H. Harima and K. Takegahara: J. Phys.: Condens. Matter 15 (2003) S2081.