(PS50)

Electronic state of 5*f*-itinerant antiferromagnets UPtGa₅.

S. Ikeda^{1,2}, T. D. Matsuda², Y. Haga², A. Galatanu², K. Kaneko², N. Metoki^{2,3}, R. Settai¹ and Y. ŌNUKI^{1,2}

¹Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

²Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai,

Naka, Ibaraki 319-1195, Japan

³Department of Physics, Tohoku University, Aoba, Sendai 980-8578, Japan

UPtGa₅ has the HoCoGa₅-type tetragonal crystal structure (P4/mmm), which belongs to a family of a heavy fermion superconductor CeCoIn₅, an antiferromagnet NpCoGa₅ and a superconductor PuCoGa₅. We have succeeded in growing the high-quality single crystal of UTGa₅ by the Ga self-flux method and measured the magnetic susceptibility, neutron scattering and de Haas-van Alphen (dHvA) effect.

It is clarified from the present magnetic susceptibility and neutron scattering measurements that UPtGa₅ is an antiferromagnet with a small magnetic moment $\mu_s = 0.26 \ \mu_B$. The effective magnetic moment $\mu_{eff} = 3.5 \ \mu_B$, obtained from the Curie-Weiss law of the magnetic susceptibility in UPtGa₅ at high temperatures up to about 800 K, is close to a free magnetic moment of 3.6 μ_B in the $5f^2(5f^3)$ configuration, suggesting a 5*f*-localized character at high temperatures, as shown Fig 1. From the dHvA experiment, it was clarified that Fermi surfaces of UPtGa₅ consist of four nearly cylindrical Fermi surfaces. The cyclotron mass for these Fermi surfaces, which is in the range from 10 to $24 \ m_0$, is also consistent with the electronic specific heat coefficient of $57 \ mJ/K^2 \cdot mol$. The relatively large mass is a strong evidence of the 5*f*-electron contribution to the conduction band, indicating the 5*f*-band magnetism in UPtGa₅. In fact, the result of dHvA experiment was well explained by the results of 5*f*-itinerant spin-(and orbital-) polarized LAPW energy band calculation, indicating that the 5*f* electrons are itinerant and also produce the magnetic moments at the uranium sites.

It is thus concluded from these results that a crossover effect of the 5f electrons from the localized nature at high temperatures to the itinerant one at low temperatures occurs in an antiferromagnet UPtGa₅.

Figure 1: Temperature dependence of magnetic susceptibility and reciprocal magnetic susceptibility in $UPtGa_5$