(PS47)

Magnetism of CeRhGe

<u>Taiki Ueda</u>¹, Daisuke Honda¹, Kiyohiro Sugiyama^{1,2}, Shiromoto Tomoyuki¹, Naoto Metoki³, Fuminori Honda³, Koji Kaneko³, Yoshinori Haga³, Tatsuma D. Matsuda³, Tetsuya Takeuchi⁴, Kouichi Kindo^{2,5}, Rikio Settai¹, Yoshichika Onuki^{1,2}

¹Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043

²KYOKUGEN, Osaka University, Toyonaka, Osaka 560-0043

³Advanced Science Research Center, Japan Atomic Energy Research Institute,

Tokai, Ibaraki 319-1195

⁴Low Temperature Center, Osaka University, Toyonaka, Osaka 560-0043

⁵Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581

CeRhGe crystallizes in the TiNiSi-type orthorhombic structure, where the Ce-atoms get lined up zigzag chains along the a-axis. It orders antiferromagnetically at $T_N = 9.4$ K. We have grown single crystalline samples and measured the electrical resistivity, specific heat, high-field magnetization, magnetic susceptibility, neutron scattering and electrical resistivity under pressure. The magnetization and magnetic susceptibility are highly anisotropic, reflecting the crystal structure. We found that the antiferromagnetic easy-axis is along the a-axis. Figure 1 shows the temperature dependence of the susceptibility. The magnetic susceptibility and magnetization were analyzed on the basis of the crystalline electric field scheme of localized-4f energy levels, and we found that there is a very large splitting energy of 4f levels. From the neutron scattering measurement the magnetic structure is of the 3-D incommensurate antiferromagnetic one.

Figure 1: Temperature dependence of the magnetic susceptibility (circles) and the inverse susceptibility (solid lines) of CeRhGe.