(PS45)

The electronic states of Ce_3Sn_7

<u>Y. Okuda</u>¹, T. Takeuchi², D. Honda¹, H. Shishido¹, T. D. Matsuda³, Y. Haga³, K. Sugiyama¹, R. Settai¹ and Y. Ōnuki^{1,3}

- 1 Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
- 2 Low Temperature Center, Osaka University, Toyonaka, Osaka, 560-0043, Japan
- 3 Advanced Science Research Center, Japan Atomic Energy Reserch Institute, Tokai, Ibaragi, 319-1195, Japan

Ce₃Sn₇ is an interesting antiferromagnet with a Néel temperatures of 5.3K. The crystal structure of Ce₃Sn₇ is orthorhombic but is close to tetragonal : a=4.524Å, b=25.742Å, c=4.610Å, which is a superstructure based on the cubic AuCu₃-type CeSn₃. From the neutron scattering and magnetization experiments, it was proposed by the Bonnet's group that the two Ce atoms at the 2(a) site possess a magnetic moment of 0.36 $\mu_{\rm B}$ /Ce oriented along the [001] direction (c-axis) and one Ce atom at the 4(i) site possesses no magnetic moment.¹)

We measured the electrical resistivity, specific heat, magnetic susceptibility, high-field magnetization, thermal expansion and magnetostricition of an antiferromagnet Ce₃Sn₇ with the orthorhombic crystal structure. The experimental data are found to be well explained on the basis of the crystalline electric field (CEF) 4*f*-scheme. We also constructed the antiferromagnetic phase diagram for three principal directions. Furthermore, we carried out the de Haas-van Alphen (dHvA) experiment. Fermi surfaces are many in number but are extremely small in volumes, indicating that Ce₃Sn₇ is a semimetal.²⁾ We shows the angular dependence of the dHvA frequency for a main branch α as shown in Fig. 1.

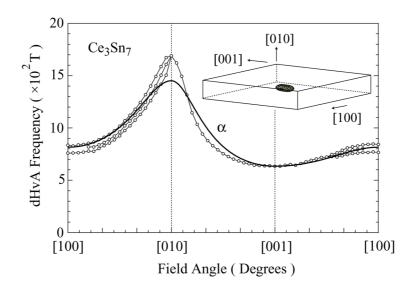


Figure 1: Angular dependence of the dHvA frequency for a main branch α in Ce₃Sn₇. The thick line indicates the ellipsoidal Fermi surface. The inset shows the Fermi surface of branch α in the flat Brillouin zone.

- 1) M. Bonnet et al.: J. Magn. Magn. Mater. 132 (1994) 289-302
- 2) Y. Okuda et al.: J. Phys. Soc. Jpn. 73 (2004) 2276-2282