(PS38)

Heavy fermion state in the f^2 periodic Anderson model

 \underline{Y} . \overline{Ono} and K. Mitsumoto

Department of Physics, Niigata University, Ikarashi, Niigata 950-2181

The crystal-field levels of the $Pr^{3+}(4f^2)$ ion in $PrOs_4Sb_{12}$ are believed to be the ground state Γ_1 singlet and the first excited state $\Gamma_4^{(2)}$ triplet with the excited energy ~10K. To elucidate the effect of the crystal-field levels on the heavy fermion behaviour, we study the two-orbital periodic Anderson model at half-filling where the average *f*-electron number per site is 2, using the dynamical mean-field theory combined with the exact diagonalization method[1]. We assume a semielliptic DOS for the bare conduction band with the half-bandwidth W = 1 and we set the *c*-*f* hybridization $V_{cf} = 0.1$.

The renormalization factor Z and the local moment $\langle \vec{S}^2 \rangle$ are obtained as functions of the on-site Coulomb interaction U, the on-site exchange coupling J and the crystal-field splitting Δ . In the case of $V_{cf} = 0$, the ionic ground state is singlet $(\langle \vec{S}^2 \rangle = 0)$ for $\Delta > \Delta_c = 3J$, while it is triplet $(\langle \vec{S}^2 \rangle = 1)$ for $\Delta < \Delta_c$. In the strong correlation regime $U \gtrsim W$, the heavy fermion state with $m^*/m = Z^{-1} \gg 1$ and $\langle \vec{S}^2 \rangle \sim 1$ is realized for $\Delta < \Delta_c$, while it is not realized for $\Delta > \Delta_c$. When the ground state singlet and the excited state triplet form a quasi-quartet $(\Delta \approx \Delta_c)$, the system shows a moderate enhancement of the effective mass $m^*/m \sim 10 - 50$ and a large enhancement of the orbital fluctuation.

Figure 1: Z and $\langle \vec{S}^2 \rangle$ as functions of Δ for several U at J = 0.01.

Figure 2: Contour maps for Z and $\langle \vec{S}^2 \rangle$ on $\Delta - U$ plane at J = 0.01.

[1] Y. Ono, M. Potthoff and R. Bulla, Phys. Rev. B 67 (2003) 035119.