(PS32)

Magnetic properties in UFe_4P_{12} and single crystal growth of thorium compound

<u>T.D. Matsuda</u>¹, Y. Haga¹, A. Galatanu¹, T. Takeuchi², S. Ikeda^{1,3}, K. Sugiyama⁴, M. Hedo⁵, Y. Uwatoko⁵, R. Settai³ and Y. Ōnuki^{1,3}

¹ASRC, JAERI, Tokai, Ibaraki 319-1195
²Low Temperature Center, Osaka University, Toyonaka, Osaka 560-0043
³Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043
⁴Res. Cent. for Mater. Sci. at Extreme Conditions, Osaka Univ., Osaka 560-0043
⁵ISSP, University of Tokyo, Kashiwa, Chiba 277-8581

Among the various filled skutterudites crystallizing in $Im\bar{3}$ cubic structure, Pr-based systems have attracted much attention due to their unusual behavior[1,2]. Studies of these Pr-based filled skutterudites systems have revealed the nature of strongly correlated electron state based on the f^2 configuration. For a systematic understanding of strongly correlated electron states in this configuration, we have started the investigation of uranium-filled skutterudite.

UFe₄P₁₂ shows a ferromagnetic ordering with the low Curie temperature $T_{\rm C} = 3.15$ K, as previously reported[3]. We have succeeded in growing single crystal of UFe₄P₁₂ and measured the electrical resistivity, specific heat, magnetic susceptibility, and high-field magnetization[4]. The experimental results have been analyzed on the basis of the crystalline electric field (CEF) model for the cubic symmetry of T_h point group. Possible CEF schemes to explain the experimental results, especially the inverse magnetic susceptibility at high temperatures up to 800 K and the magnetization in magnetic field up to 50 T, are proposed. The $5f^2$ -CEF schemes of the Γ_1 ground state and the $\Gamma_4^{(2)}$ first excited state, separated by 6 K, and also the $\Gamma_4^{(2)}$ ground state and the Γ_{23} first excited state, separated by 800 K, explain well the overall magnetic property on UFe₄P₁₂. From these analyses, the characteristic term $O_6^2 - O_6^6$ in the CEF Hamiltonian for T_h site symmetry was found to be essentially important to explain the small saturation moment of 1.3 $\mu_{\rm B}/{\rm U}$ in UFe₄P₁₂.

Figure 1: Reciprocal magnetic susceptibility for UFe₄P₁₂. The dashed and solid lines represent the results of the $5f^2$ -CEF calculations. (see ref. [4])

- [1] H. Sugawara et al., Phys. Rev. B 66, 220504 (2002) and references therein.
- [2] E.D. Bauer *et al.*, Phys. Rev. B **65**, 100506R (2002).
- [3] H. Nakotte et al., Physica B 259-261, 280 (1999) and references therein.
- [4] T.D. Matsuda *et al.*, J. Phys. Soc. Jpn, **73**, 2533 (2004).