(PS30) Magnetic and thermal properties of YbFe₄Sb₁₂ single crystal

T. Ikeno¹, T. Mizushima¹, A. Mitsuda¹, T. Kuwai¹, Y. Isikawa¹, I. Tamura²

¹Department of Physics, Toyama University, Toyama 930-8555

²Toyama Medical and Pharmaceutical University, Toyama 930-0194

Single crystals of YbFe₄Sb₁₂ have been prepared by several different methods. The weight of the single crystals was about 1 mg. We measured the magnetic susceptibility $\chi(T)$, magnetization and specific heat C(T) in these single crystals, named as #5 and #7, and the Mössbauer effect in polycrystalline samples, named as #2 and 'pellet', at temperatures from 13 to 300 K.

Above 130 K, the reciprocal magnetic susceptibility $1/\chi(T)$ of both two single crystals coincides each other, and obeys the Curie-Weiss law as shown in Fig. 1. The $\chi(T)$ of YbFe₄Sb₁₂ is seemed to be mostly originated from the magnetism of Fe₄Sb₁₂ polyanions, by comparing it to $\chi(T)$ of LaFe₄Sb₁₂ and alkali earth Fe₄Sb₁₂[1]. The magnetization at low temperatures depends on the samples; one (#5) is paramagnetic, the other (#7) is weak ferromagnetic at 2 K. The *T*c of #7 is about 11 K, thought there is not any distinct anomalies around 11 K in *C*(*T*) curves as shown in Fig. 2. It is not clear whether this weak ferromagnetism is intrinsic or not. The γ value of two single crystals is about 160 and 140 mJ/mol K² for #7 and #5, respectively, which is comparable to that of LaFe₄Sb₁₂[2]. In the single crystalline YbFe₄Sb₁₂, the valence of Yb is seemed to be close to 2.

0.8

Mössbauer spectrum at each temperature consists of a quadrupole doublet with a line width of about 0.24 mm/s. This fact indicates that there is no magnetic order in YbFe₄Sb₁₂ above 13 K. Moreover, the center shifts and the quadrupole splittings suggest that Fe atoms in YbFe₄Sb₁₂ are in a low spin state between Fe²⁺ and Fe³⁺.

Fig. 3. Quadrupole splitting of $YbFe_4Sb_{12}$ and $LaFe_4Sb_{12}$.

[1] M. E. Danebrock et al., J. Phys. Chem. Solids 57 (1996) 381.

[2] E. Bauer et al., Phys. Rev. B 63 (2001) 224414.

