(PS28)

Specific Heat and Electrical Resistivity of Filled Skutterudite $GdRu_4P_{12}$ in a Magnetic Field

<u>K. Matsuhira</u>¹, C. Sekine², K. Kihou², I. Sirotani², M. Wakeshima³ and Y. Hinatsu³, Y. Sei¹, A. Nakamura¹ and S. Takagi¹

- ¹ Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550
- ² Department of Electrical and Electronic Engineering, Muroran Institute of Technology, Muroran, Hokkaido, 050-8585
- ³ Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, 060-0810

We report the results of specific heat and electrical resistivity $\rho(T)$ in a magnetic field on filled skutterudite GdRu₄P₁₂. GdRu₄P₁₂ shows an antiferromagnetic transition at $T_{\rm N}=22$ K [1]. $\rho(T)$ indicates a metallic behavior below room temperature. Interestingly, $\rho(T)$ shows a broad minimum around 30 K and a sharp upturn at $T_{\rm N}$. The sharp upturn at $T_{\rm N}$ suggests a formation of superzone gap in the unique Fermi surface with the nesting vector $\mathbf{q}=(1,0,0)$. The systematic research on $Ln \mathrm{Ru}_4 \mathrm{P}_{12}$ with various 4f electron state is necessary in order to reveal the role of 4f electron in the metal-insulator transition of $\mathrm{PrRu}_4 \mathrm{P}_{12}$ and $\mathrm{SmRu}_4 \mathrm{P}_{12}$.

Figure 1(a) shows the $\rho(T)$ of GdRu₄P₁₂ in various magnetic fields. Applying magnetic field, the sharp upturn at $T_{\rm N}$ becomes small and shifts to lower temperature. Finally, the upturn disappears in 7 T. The broad minimun around 30 K disappears in 2 T. From the analysis of $\rho(T)$ data, we found that the zero field-resistivity due to the *c-f* exchange scattering from the Gd³⁺ 4*f* energy levels increases below ~60 K. Inset shows the magnetic phase diagram. The magnetic phase diagram is consistent with the previous result of magnetization process at 4.2K and 10 K [1]. The large negative magnetoresistance (~ -70 %) observed at 2.2 K is qualitatively explained by a collapse of superzone gap (Fig.1(b)).

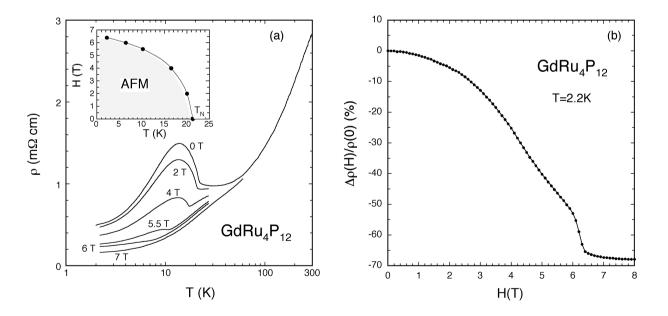


Figure 1: (a) Eelectrical resistivity of $GdRu_4P_{12}$ in various magnetic fields. Inset shows the magnetic phase diagram. (b) Magnetoresistance of $GdRu_4P_{12}$ at 2.2 K.

 C. Sekine, T. Uchiumi, I. Shirotani, K. Matsuhira, T. Sakakibara, T. Goto and T. Yagi: Phys. Rev. B 62 (2000) 11581.