(PS27)

³¹P-NMR Measurement on a Filled Skutterdite Compound SmRu₄P₁₂

S. Masaki¹, T. Mito¹, N. Oki¹, S. Wada¹, N. Takeda² and M. Ishikawa³

¹Department of Physics, Kobe University, Kobe, Hyogo 657-8501

²Department of Materials Science and Technology, Niigata University, Niigata 950-2181

³Institute Solid State Physics, University of Tokyo, Kashiwa, Chiba, 277-8581

In order to obtain microscopic information on the two anomalies observed around the metal-insulator (M-I) transition (T_{MI} ~ 16K) of SmRu₄P₁₂ [1, 2], we have carried out ³¹P-NMR measurements on a powdered sample at various external magnetic fields *H*. It is worth noting that the broadened NMR spectrum below T_{MI} observed at high-*H* significantly defers in shape from that at low-*H*, and the threshold temperature of the linewidth broadening increases with increasing *H*.

At low *H* of ~1.3T, the sharp NMR line in the high-*T* paramagnetic state becomes broadened at 16.2 K, as was reported by previous NMR measurement [3]. The threshold temperature of the linewidth broadening is also consistent with T_{MI} reported previously by resistivity and specific heat measurements [1]. Below T_{MI} , the NMR linewith continues to increase without displaying any structure. At high-*H*, on the other hand, the NMR spectrum just below $T_{\text{MI}}(H)$ consists of rather narrow two resonance groups and broad lines (Fig. 1). With decreasing *T* down to 13 K, the spectrum continues to change the shape to a more complicated structure. Such peculiar behavior is more remarkable as increasing field. $T_{\text{MI}}(H)$ gradually increases with increasing *H* and reaches to 16.7K at 7T [2]. These trends are consistent with the *H*-dependence of the specific heat [2]. It has been considered that the successive anomalies at ~ 16 K and ~ 13 K originate from the quadrupolar and antiferromagnetic orderings, respectively [1, 2]. The splitting of the NMR spectrum into two resonance groups below T_{MI} is considered to be caused by an antiferro-type orbital ordering. At ~ 13 K, however, we could not detect clear evidence for the magnetic ordering. Below ~10 K, the NMR spectrum becomes trapezoidal in shape and the width is independent of *H*. This is typical for the magnetic ordering in polycrystalline samples.

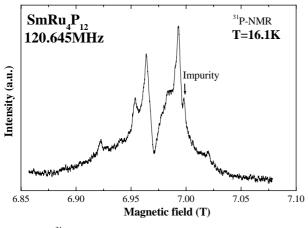


Fig. 1. ³¹P-NMR spectrum at 7 T and 16.1 K (< T_{MI}).

K. Matsuhira *et al*, J. Phys. Soc. Jpn. 71(2002) Suppl. 237.
C. Sekine and I. Shirotani, Act. Phys. Pol. B 34(2003) 983.
K. Fujiwara *et al*, Physica B 329(2003) 476.