Anomalous behavior of SmFe₄P₁₂ proved by NMR

N. Oki¹, T. Mito¹, S. Noguchi¹, S. Masaki¹, S. Wada¹, N. Takeda², and M. Ishikawa³

SmFe₄P₁₂ shows heavy Fermion-like behavior below \sim 30K followed by a ferromagnetic ordering at 1.6K [1]. In order to elucidate the electronic and magnetic states microscopically, we have carried out 31 P-NMR measurements.

Fig.1 shows the T-dependence of the nuclear spin-lattice relaxation rate $1/T_1$ at various magnetic fields. The important point to be notified is the unusual behavior observed below ~8K, that is similar to the T-dependence of $1/T_1$ for $PrFe_4P_{12}$ [2]. $PrFe_4P_{12}$ shows an antiferroquadrupolar ordering at ~6.5K. On the other hand, from the broad hump observed around 8K in the T-dependence of the specific heat of $SmFe_4P_{12}$ [1,3], we consider that the anormalous $1/T_1$ behavior is caused by a crossover associated with the thermal excitation between the ground state and the first excited state of the CEF splitting energy levels, rather than the phase transition.

Fig.2 shows the T-dependence of 31 P-NMR spectra below ~ 10 K, well above $T_c(H)$, where the NMR spectra are largely broadened and have a structure in shape. This is not caused by ferromagnetic ordering but is interpreted as an overlap of two distinct spectra.

- [1] N. Takeda and M. Ishikawa., J, Phys.: Condens. Matter 15 (2003) L229.
- [2] K. Ishida et. al., to appear in Phys. Rev. B.
- [3] K. Matsuhira et al., to appear in J. Phys. Soc. Jpn.

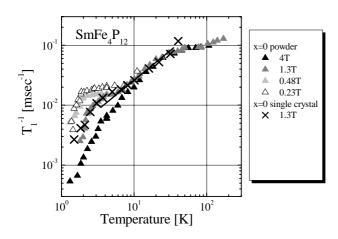


Fig.1 Temperature dependence of $1/T_1$ at various magnetic fields.

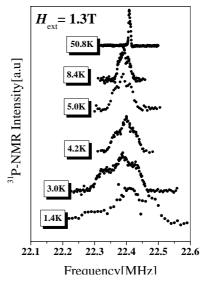


Fig.2 Temperature dependence of ³¹P-NMR spectra.

¹Grad. School of Sci. & Tech. and Dept. of Physics, Kobe Univ., Kobe, Hyogo 657-8501

²Dept. of Mat. Sci. & Tech., Niigata Univ., Niigata 950-2181

³Institute Solid State Physics, Univ. of Tokyo, Kashiwa, Chiba, 277-8581