(PS22)

μSR studies on the superconducting state in $Pr_xLa_{1-x}Os_4Sb_{12}$

<u>T. Tsunashima</u>¹, Y. Aoki¹, W. Higemoto², S. Sanada¹, S. R. Saha³, K. Ohishi³, A. Koda³, K. Nishiyama³, R. Kadono³, D. Kikuchi¹, H. Sugawara⁴ and H. Sato¹

¹Graduate School of Science, Tokyo Metropolitan University, Hachioji, 192-0397

²Advance Science Research Center, JAERI, Tokai, 319-1195

³Institute for Material Structure Science, KEK, Tsukuba, 305-0801

⁴Faculty of Integrated Arts and Sciencies, Tokushima University, Tokushima, 770-8502

By using zero-field muon spin relaxation (ZF- μ SR) tecnique, which has been proved to be an effective probe of internal magnetic fields, we observed spontaneous internal fields in the SC state, providing clear evidence for broken time-reversal symmetry (TRS) in PrOs₄Sb₁₂ [1]. On the other hand, in a non-4*f* electron superconductor LaOs₄Sb₁₂ ($T_{\rm C} = 0.74$ K) any anomalous internal magnetic fields have not been detected [2]. To investigate the role of 4*f*-electrons for the TRS-breaking, we perform μ SR measurement on La-substituted Pr_xLa_{1-x}Os₄Sb₁₂.

The μ SR measurements were performed at the π A port of the Meson Science Labolaory, KEK-MSL, Japan. In Pr_{0.6}La_{0.4}Os₄Sb₁₂(T_C=1.6K), ZF- μ SR relaxation in SC state is slightly stronger than that in normal state. The spectra can be fit by Kubo-Toyabe function multiplied by exp(-At). This fact indicate that muons feel static and dynamic internal fields. The electronic (or SC) contribution Δ_e can be obtained from experimental Δ using $\Delta^2 = \Delta_n^2 + \Delta_e^2$, where Δ_{n^2} is the nuclear dipole contribution obtained in the normal state. For Pr_{0.6}La_{0.4}Os₄Sb₁₂, a spontaneous field of ~ 0.6 Gauss is obtained. Results of LF- μ SR and TF- μ SR will also be presented.

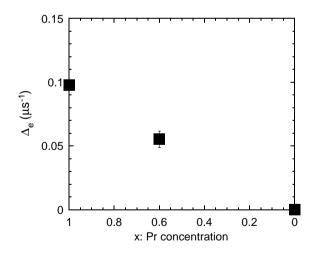


Figure 1: Pr concentration dependence of Δ_{e} in $Pr_{0.6}La_{0.4}Os_4Sb_{12}$

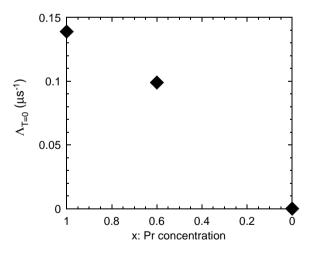


Figure 2: Pr concentration dependence of $\Lambda_{T=0}$ in $Pr_{0.6}La_{0.4}Os_4Sb_{12}$

- [1] Y. Aoki *et al.* : Phys. Rev. Lett. 91 (2003) 067003
- [2] Y. Aoki et al. to be published in Physica B (2005): proceedings of SCES2004.