(PS21)

Knight shifts and novel transitions in $PrRu_4P_{12}$ and $CeOs_4Sb_{12}$ studied by μSR

S.R. Saha¹, A.Koda¹, K. Ohishi¹, R. Kadono¹, W. Higemoto², Y. Aoki³, H.Sugawara³, H. Sato³

¹Institute for Material Structure Science, KEK, Tsukuba, Ibaraki 305-0801

²Advance Science Research Center, JAERI, Tokai, Ibaraki 319-1195

³Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397

PrRu₄P₁₂ exhibits a metal-insulator (M-I) transition at T_{MI} =60 K [1]. On the other hand, CeOs₄Sb₁₂ was reported to be a Kondo insulator [2] exhibiting a phase transition below ~ 1 K [3]. The origin of the phase transitions and the ground states of the two compounds are not clear yet. We conducted the first μ SR experiments in PrRu₄P₁₂ in which the zero field (ZF) relaxation rate shows no anomaly across T_{MI} and then increases below ~30 K, though no magnetic order appears down to 20 mK [4]. Recently, we have measured the μ SR Knight shifts in both compounds and extended the ZF and LF measurements down to 20 mK in CeOs₄Sb₁₂.

In $PrRu_4P_{12}$, the Knight shift measurements suggest two frequencies above T_{MI} [upper panel of Fig. 1a)]. With decreasing temperature, f_1 shows almost no shift, while f_2 shows negative shifts and splits into two at least below ~ 30 K [lower panel]. These results explains the increase of the internal field below ~30 K considering the appearance of magnetically in equivalent Pr_1 (body center) and Pr_2 (cubic corner) sites as also suggested by the CEF level scheme [5].

Figure 1: a) Fourier amplitude vs. frequency of the μ SR Knight shift measurement at 1.5 T in PrRu₄P₁₂. b) The ZF relaxation rate (2-0.02 K) in CeOs₄Sb₁₂. The dotted lines are eye-guides.

Figure 1b) shows the temperature dependence of the ZF relaxation rate in CeOs₄Sb₁₂ down to 20 mK. The ZF asymmetry spectra were reproduced by the fit to a sum of the 'exponential' and 'power exponential' damping function $P_{\mu}(t) = A_1 exp(-\lambda t) + A_2 exp(-\Lambda t)^{\beta}$. The exponential relaxation rate λ clearly increases below ~1 K, suggesting that the transition is intrinsic and it could be a spin density wave (SDW). The Knight shift measurements upto 6 T show multiple frequencies below 10 K in CeOs₄Sb₁₂, the detail of which will be discussed.

References: [1] Sekine et al., Phys. Rev. Lett. 79 (1997) 3218. [2] Bauer et al., J. Phys. Conden. Matter 13(2001)4495. [3] Namiki et al., Acta Physica Polonica B 34(2003)1161. [4] Saha et al., to be published in Physica B (proceedings of SCES 2004), 2005. [5] Iwasa et al., to be published in Physica B (proceedings of SCES 2004), 2005; submitted to Phys. Rev. lett.