(PS19)

Structural Analisys of $PrRu_4P_{12}$ under High-Pressure and at Low-Temperature of $PrRu_4P_{12}$

<u>A. Miyake¹, Y. Nakamoto¹, K. Takeda², T. Kagayama¹, K. Shimizu¹, Y. Ohishi³, C. Sekine⁴, K. Kihou⁴ and I. Shirotani⁴</u>

- ¹KYOKUGEN, Osaka University, Toyonaka 560-8531
- ²Faculty of Science and Engineering, Tokyo University of Science, Yamaguchi, Onoda 756-0884
- ³SPring-8/JASRI, Sayo, 679-5198
- ⁴Department of Electrical and Electronic Engineering, Muroran Institute of Technology, Muroran 050-8585

 $PrRu_4P_{12}$, which shows metal-insulator (M-I) transition at 62 K and ambient pressure [1], is very interesting, because of a drastic change of transport properties at high-pressure. With increasing pressure, the semiconductor-like electrical resistivity below the transition temperature $T_{\rm MI}$ was suppressed as pressure increases up to 8 GPa [2]. Metallic behavior was seen above 11 GPa and below 50 K. In addition, $PrRu_4P_{12}$ becomes superconducting above 12 GPa and below 1.8 K [3]. $T_{\rm MI}$ is almost independent of pressure, in contrast to the drastic change of the R(T) curve. At ambient pressure, a structural transition was observed at $T_{\rm MI}$, from $Im\bar{3}$ to $Pm\bar{3}$ [4, 5]. After the metallization, an anomaly in the resistance is still observed at around 60 K, suggesting a structural change may still occur. What induces the metallization?

In order to connect these results to structural properties, we performed powder X-ray diffraction measurements using a poly-crystal under high-pressure and low-temperature with the synchrotron beam. We performed Rietveld analyses, and compared the temperature dependence of lattice parameters at 9 GPa and 13 GPa. We found a difference in behavior between the pressures. At 13 GPa, the PrP_{12} icosahedrons becomes larger at lower temperature, suggesting that the distance between the icosahedrons become shorter. Metallization may be a due to the change of position of the P atoms, which carry the conduction electrons.

- [1]C. Sekine *et al.*, Phys. Rev. Lett. **79** (1997) 3218.
- [2]I. Shirotani *et al.*, Physica B **322** (2002) 408.
- [3]A. Miyake et al., J. Phys. Soc. Jpn. **73** (2004) 2370.
- [4]C. H. Lee *et al.*, Phys. Rev. B **70** (2004) 153105.
- [5]L. Hao et al., J. Mag. Mag. Mater. 272-276 (2004) e271.