(PS15)

Electronic state of $PrFe_4P_{12}$ under the [111] magnetic field studied by ³¹P NMR

J. Kikuchi¹, M. Takigawa¹, H. Sugawara² and H. Sato³

¹Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581

²Faculty of Integrated Arts and Sciencies, Tokushima University, Tokushima 770-8502

³Graduate School of Science, Tokyo Metropolitan University, Hachioji 192-0397

We have measured ³¹P NMR in PrFe₄P₁₂ down to 400 mK in order to clarify the nature of the ground state under magnetic fields applied along [111], for which a new high-field ordered phase was found recently [1]. The ³¹P-NMR lines start to broaden below the transition temperature $T_{\rm B} \approx 600$ mK at the field H = 11.8 T. This is attributed to the anomaly in the uniform magnetization [1] and/or possible line splitting accompanied by the phase transition at $T_{\rm B}$. The ³¹P nuclear spin-lattice relaxation rate divided by temperature, $1/T_1T$, exhibits a rounded maximum around $T \sim 1$ K, indicating crossover from a non fermi-liquid state with almost T-independent $1/T_1$ at higher T to a pseudo-gap state just above $T_{\rm B}$. We also found a small drop of $1/T_1T$ at $T_{\rm B}$ on decreasing temperature which suggests suppression of low-energy magnetic excitations in the ordered phase.

Figure 1: Temperature dependence of the ³¹P nuclear spin-lattice relaxation rate in $PrFe_4P_{12}$. The inset shows $1/T_1T$ for the [111] field at low temperatures. Arrows indicate the transition temperature T_B .

[1] T. Tayama et al.: J. Phys. Soc. Jpn. 73 (2004) 3258.