(PD3)

μ SR Study of Sm-based Phosphide Sm T_4 P₁₂ (T = Fe, Ru and Os)

<u>K. Hachitani</u>¹, H. Amanuma², Y. Kohori^{1,2}, H. Fukazawa^{1,2}, I. Watanabe⁴, K. Kumagai³, C. Sekine⁵ and I. Shirotani⁵

¹Graduate School of Science and Technology, Chiba University, Chiba, 263-8522

²Department of Physics, Faculty of Science, Chiba University, Chiba, 263-8522

³Graduate School of Science, Hokkaido University, Sapporo, 060-0810

⁴Advanced Meson Science Laboratory, RIKEN, Wako, 351-0198

⁵Department of Electrical and Electronic Engineering, Muroran Institute of Technology, Muroran, 050-8585

 SmT_4P_{12} (T = Fe, Ru and Os) have recently attracted much attention for the variety of the physical properties, such as the heavy fermion (HF) behavior, the metal-insulator (M-I) transition, the antiferro-quadrupolar (AFQ) order and the magnetic order (FM/AFM). The electronic states of these compounds have been studied by the μ SR and the ³¹P-NMR.

The FM ($T_{\rm C} = 1.6$ K) in SmFe₄P₁₂ and AFM ($T_{\rm N} = 4.6$ K) in SmOs₄P₁₂ have been confirmed from microscopic viewpoints by our ZF- μ SR measurements (at RIKEN-RAL in UK and at PSI in Switzerland) and the ³¹P-NMR measurements in the applied magnetic fields. However, SmRu₄P₁₂ system seems to be not so simple [1]. SmRu₄P₁₂ was reported to exhibit the M-I transition at $T_{\rm MI} = 16.5$ K below which two successive transitions occur: AFQ order below 16.5 K and the AFM below 15K, respectively in ZF [2].

We have observed the muon spin precessions in both $SmFe_4P_{12}$ (not shown) and $SmOs_4P_{12}$ (Fig. 1) due to the magnetic orders with the static internal magnetic fields below each transition temperature. The internal magnetic fields of 650 Oe in $SmFe_4P_{12}$ and of 250 Oe in $SmOs_4P_{12}$ were evaluated from each resonance frequency. The difference of the magnitudes would be reflected by the magnetic structures (FM in $SmFe_4P_{12}$ and AFM in $SmOs_4P_{12}$) [3,4]. In contrast, the muon spin precession was not observed in $SmRu_4P_{12}$ below T_N (Fig. 2). The internal magnetic field is not homogeneous, which is consistent with the results of our ³¹P-NMR measurements.

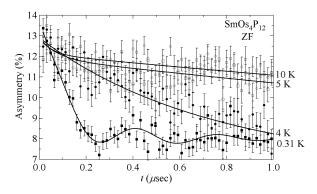


Fig. 1 Temperature dependence (around $T_{\rm N}$) of the $\mu {\rm SR}$ time spectrum of SmOs₄P₁₂ (at RAL).

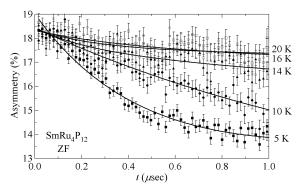


Fig. 2 Temperature dependence (around $T_{\rm MI}$) of the μ SR time spectrum of SmRu₄P₁₂ (at RAL).

- [1] K. Hachitani et. al: Journal of the Institute of Pure and Applied Physics (In Press).
- [2] C. Sekine et. al: Acta Physica Polonica B 34 (2003) 983.
- [3] R. Giri et. al: Physica B **329-333** (2003) 458.
- [4] N. Takeda and M. Ishikawa: Physica B 329-333 (2003) 460.