NMR study on LaFe₄P₁₂ in the superconducting state

Y.Nakai¹, K.Ishida¹, H. Sugawara², D. Kikuchi³ and H. Sato³

¹Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan,

²Faculty of Integrated Arts and Sciencies, Tokushima University, Tokushima 770-8502

³Graduate School of Science, Tokyo Metropolitan University, Hachioji, 192-0397

In order to clarify the superconducting properties, we have performed $^{139}\text{La},^{31}\text{P-NMR}$ studies on filled skutterudite superconductor $\text{LaFe}_4\text{P}_{12}$ with a critical temperature $T_c = 4.1\text{K}$. Below T_c , although absence of the coherence peak was observed in T_1 at both La and P sites in 4300G, we observed a distinct coherence peak just below T_c in smaller fields of 950G and 1500G as shown in Fig.1. The coherence peak is found to be easily suppressed by the applied field. An exponential decrease of $1/T_1$ was observed, suggestive of the isotropic superconducting gap with $2\Delta/k_BT_c = 3.8$. Besides, we observed the decrease of the Knight shift, indicative of the singlet-pair formation below T_c . These results are clear evidence that $\text{LaFe}_4\text{P}_{12}$ is a conventional s—wave superconductor. In the poster presentation, we will also show the preliminary data of $\text{LaOs}_4\text{Sb}_{12}$ in the normal state studied by $^{139}\text{La-NMR}$ which indicates the existence of active phonon relaxation in this compound.

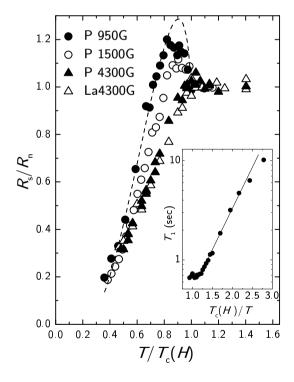


Figure 1: R_s/R_n vs $T/T_c(H)$ under various magnetic fields. The dotted curve is a fit to the theory of Hebel and Slichter with a broadened density of states. Inset: Semilogarithmic plot of T_1 vs $T_c(H)/T$. The solid line represents the relation $T_1 \propto \exp\left(\frac{\Delta(0)}{k_BT}\right)$ with $2\Delta(0)/k_BT_c = 3.8$.