(PD1)

Photoemission spectroscopy of AT₄Sb₁₂ (A=Ca, Sr, Ba; T=Fe, Ru, Os)

<u>H. Sato¹</u>, M. Higashi², K. Yoshikawa², E. Matsuoka³, K. Hayashi³, S. Narazu³, T. Takabatake³, M. Nakatake¹, H. Namatame¹ and M. Taniguchi^{1,2}

- ¹ HSRC, Hiroshima University, Higashi-Hiroshima 739-8526
- ² Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526
- ³ ADSM, Hiroshima University, Higashi-Hiroshima 739-8530

Filled-skutterudite compounds have attracted a great interest because of the thermoelectric application as well as unusual physical properties. In comparison with rare-earth filled compounds, alkaline-earth filled ones have less been studied. Recently, Matsuoka *et al.* have prepared AT_4Sb_{12} (A=Ca, Sr, Ba; T=Fe, Ru, Os) polycrystals and investigated their magnetic and transport properties [1, 2]. In collaboration with them, we have started photoemission spectroscopy (PES) of AT_4Sb_{12} using synchrotron radiation in December 2004. In this workshop, we report preliminary results of the valence-band and Sb 4d PES spectra of AT_4Sb_{12} .

High density pellets were prepared by a spark-plasma sintering technique. The samples were characterized by x-ray diffraction measurements and electron-probe micro-analysis. Clean surfaces for PES measurements were obtained by fructuring. PES spectra were measured on the beamline BL7 at HiSOR using a hemispherical photoelectron analyzer (Gammadata-Scienta SES100). Total energy resolution was set to 120 meV at $h\nu$ =60 eV. The experiments were carried out at room temperature with excitation energies of $h\nu$ =100, 60 and 70 eV for T=Fe, Ru and Os, respectively, where PES spectra almost reflect T d density of states (DOS) due to energy-dependent photo-ionization cross-sections of photoelectrons [3].

From the valence-band PES spectra, we find that the T d bands shift toward deeper bindingenergy side as going from T=Fe to Ru, and to Os. In particular, only for AFe₄Sb₁₂, the Fe 3d DOS largely contributes to the Fermi level (E_F). On the other hand, few DOS is observed at E_F for ARu₄Sb₁₂ and AOs₄Sb₁₂ compounds. The present experimental result is consistent with the results of electric specific coefficients; $\gamma \sim 100$ for AFe₄Sb₁₂ and ~ 10 mJ/mol K² for ARu₄Sb₁₂ [1]. The Sb 4d PES spectra of AOs₄Sb₁₂ show multi-components on the deeper side of the Sb 4d_{5/2} and 4d_{3/2} main peaks, which are not observed for AFe₄Sb₁₂ and ARu₄Sb₁₂. At present, it is not clear whether the origin is intrinsic and extrinsic. The further experiments are in progress and we will those results including high-energy resolution PES of AT₄Sb₁₂ at next meeting.

- [1] E. Matsuoka *et al.*, cond-mat/0412094.
- [2] E. Matsuoka *et al.*, this workshop 6b5.
- [3] J. J. Yeh and I. Lindau, At. Data Nucl. Data Tables **32**,1 (1985).