Modulated Quadrupole Ordering Structures in PrPb₃

T. Onimaru¹, T. Sakakibara¹, N. Aso², H. Yoshizawa², H. Suzuki³ and T. Takeuchi⁴

¹Institute for Solid State Physics, University of Tokyo, Kashiwa, 277-8581

²Neutron Science Laboratory, Institute for Solid State Physics, University of Tokyo,

Tokai 319-1106

³National Institute of Materials Science, Tsukuba 305-0047

⁴Low Temperature Center, Osaka University, Toyonaka 560-0043

In the present study, we concentrate our attention on the intermetallic compoundPrPb₃ with AuCu₃-type cubic structure. The crystalline field ground state of PrPb₃ is a Γ_3 non-Kramers doublet, with a magnetic Γ_4 triplet lying 15~19 K above the ground state.[1-3] Since the Γ_3 doublet carries quadrupolar moments $O_2^0 = (3J_z^2 - J^2)/2$ and $O_2^2 = \sqrt{3}(J_x^2 - J_y^2)/2$, PrPb₃ is a good candidate for the quadrupole transition. This compound actually exhibits a second-order transition at 0.4 K with a lambda-type anomaly in the specific heat.[4,5] Absence of a magnetic superlattice reflection nor a lattice distortion in the neutron diffraction measurement performed in zero magnetic field[1] suggests the phase transition to be of AFQ.

We performed neutron diffraction measurements on the cubic compound PrPb₃ in a [001] magnetic field to examine the quarupolar ordering. Fig. 1 shows the results of Q-scans along the $(h\frac{1}{2}0)$ line carried out in a field of H=4 T at various temperatures ranging from 0.125 K to 0.8 K. The inset of Fig. 1 shows the (hk0) reciprocal plane $(\perp H)$ investigated, where open and closed circles represent the nuclear and the magnetic reflections, respectively, observed in a field of H=4 T at T=0.125 K. On cooling below the transition temperature $T_Q=0.65$ K, superlattice reflections with $q=(1\pm\delta^1 0)$ $(1\pm\delta^2)$

superlattice reflections with $q = (\frac{1}{2} \pm \delta \frac{1}{2} 0), (\frac{1}{2} \pm \delta \delta \frac{1}{2} 0)$ 0), $(\delta \sim \frac{1}{2})$ are observed. These reflections show that quadrupoles are ordering with a sinusoidal modulated structure. The intensity of these reflections vary linear to H and vanish at zero field, providing the first evidence for a modulated quadrupolar phase. For H < 1 T, a non-square modulated state persists to below 100 mK suggesting quadrupole moments associated with a Γ_3 doublet ground state to be partially quenched by hybridizations with conduction electrons. On further cooling below $T_t=0.45$ K, the third-order harmonics $(\frac{1}{2}\pm 3\delta \frac{1}{2} \ 0)$ and $(\frac{1}{2}\frac{1}{2}\pm 3\delta \ 0)$ with much weaker intensity is found to develop. This state undergoes a first-order transition to an antiphase structure.

Ref.

- [1] M. Niksch et al., Helv. Phys. Acta 55, 688 (1982).
- [2] W. Gross et al., Z. Phys. B 37, 123 (1980).
- [3] T. Tayama et al., J. Phys. Soc. Jpn. 70, 248 (2001).
- [4] E. Bucher et al., J. Low Temp. 2, 322 (1972).
- [5] D. Aoki et al., J. Phys. Soc. Jpn. 66, 3988 (1997).

Figure 1: Evolution of the magnetic scattering in a field of H=4 T applied along the [001] direction, obtained in a temperature interval of 0.125 K<T<0.81 K. The Q-scans were performed along the line $(h\frac{1}{2}0)$, as indicated by a arrow in the (hk0)reciprocal plane (inset) where open and closed circles represent the nuclear and the magnetic reflections, respectively, observed at T=0.125 K.