Pressure-induced superconductivity of Ce₂Ni₃Ge₅

<u>M. Nakashima</u>¹, H. Kohara², A. Thamizhavel², Y. Obiraki², T. D. Matsuda³, Y. Haga³, M. Hedo⁴, Y. Uwatoko⁴, R. Settai² and Y. Ōnuki^{2,3}

¹Research Center for Materials Science at Extreme Conditions, Osaka University, Toyonaka, 560-8531

²Graduate School of Science, Osaka University, Toyonaka, 560-0032

 $^3\mathrm{Advanced}$ Science Research Center, Japan Atomic Energy Research Institute, Tokai, 319-1195

⁴Institute for Solid State Physics, University of Tokyo, Kashiwa, 277-8581

Ce₂Ni₃Ge₅ is reported as an antiferromagnetic Kondo compound, which has two magnetic transitions at 4.5 and 5.1 K [1]. We have measured the electrical resistivity of Ce₂Ni₃Ge₅ under pressure by the cubic anvil cell [2] and indenter cell. The polycrystal sample of Ce₂Ni₃Ge₅ was prepared by arc-melting the stoichiometric amounts of the elements. At ambient pressure, there are two kinks at 4.5 and 5.0 K, corresponding to the antiferromagnetic phase transitions [1]. Under high pressure, we find only one kink in the resistivity above 1.6 GPa, as shown in Fig. 1. With increasing pressure, $T_{\rm N}$ is decreased, and becomes zero at a critical pressure $P_{\rm c} \simeq 3.4$ GPa. The A and ρ_0 values of the resistivity $\rho = \rho_0 + AT^2$ in the Fermi liquid relation become maximum around $P_{\rm c}$. This behavior is similar to that in CeNiGe₃, where superconductivity is found below 0.48 K in a wide pressure region from 4 to 10 GPa [3]. We have also found superconductivity in Ce₂Ni₃Ge₅ below 0.18 K at 3.5 GPa.

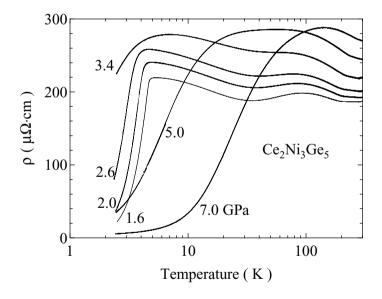


Figure 1: Logarithmic scale of temperature dependence of the electrical resistivity under pressures in $Ce_2Ni_3Ge_5$.

- [1] Z. Hossain et al., Phys. Rev. B 62 (2000) 8950.
- [2] N. Mori *et al.*, High Pressure Research 24 (2004) 225.
- [3] M. Nakashima et al., J. Phys. Condens. Matter 16 (2004) L255.