(7b5)

Microscopic study of superconducting characteristics on $(Pr_{1-x}La_x)Os_4Sb_{12}$: ^{121,123}Sb-NQR

<u>M. Yogi¹</u>, Y. Imamura¹, T. Nagai¹, H. Kotegawa², G. -q. Zheng², H. Mukuda¹, Y. Kitaoka¹, D. Kikuchi³, H. Sugawara⁴ and H. Sato³

¹Graduate School of Engineering Science, Osaka University, Toyonaka, 560-8531

²Department of Physics, Okayama University, Tsushimanaka, 700-8530

³Graduate School of Science, Tokyo Metropolitan University, Hachioji, 192-0397

⁴Faculty of Integrated Arts and Sciences, Tokushima University, Tokushima 770-8502

We report on superconducting (SC) characteristics for $PrOs_4Sb_{12}$ and $(Pr_{1-x}La_x)Os_4Sb_{12}$ (x = 0.05, 0.2) via the measurements of nuclear spin-lattice relaxation rate $1/T_1$ and NQR spectrum of Sb nuclear. Our previous work has revealed that the $1/T_1$ in $PrOs_4Sb_{12}$ shows neither a coherence peak just below $T_c = 1.85$ K nor a T^3 like behavior that used to be observed for unconventional heavy-fermion (HF) superconductors with the line-node gap [1]. Likewise, the La substituted samples exhibit no coherence peak just below T_c . This result demonstrates that $PrOs_4Sb_{12}$ is not a simple anisotropic *s*-wave superconductor where the nonmagnetic impurity scattering makes a coherence peak increase due to the averaging effect of any anisotropic gap structure. The $1/T_1(T)$ for $PrOs_4Sb_{12}$ undergoes an exponential decrease in the range T=0.6 K($0.32T_c$) – $T_c = 1.89$ K, indicative of a gap opening over the Fermi surfaces at a high temperature regime. This seems to be inconsistent with the angle-resolve thermal conductivity measurements that suggested the presence of point-node gap under a magnetic field [2]. At a temperature regime lower than 0.6 K, it is unexpected that the T variation in $1/T_1$ is unusual depending on the sample quality and the La substitution which enhance $1/T_1$ significantly. Remarkably, the latter leads to $1/T_1 = \text{constant behavior below } T \sim 0.6$ K.

Fig.1 displays $1/T_1(T)$ for two different type of the samples of $PrOs_4Sb_{12}$, which exhibits the exponential decrease in the range $T=0.6 \text{ K}(0.32T_c)$ - $T_c = 1.89$ K, and $1/T_1 = \text{constant below } T \sim 0.6$ K. This result suggests that a possible new phase may exist below $T \sim 0.6$ K. On the other hand, it should be noticed that the La substitution, which breaks up a coherency of $4f^2$ derived heavy-fermion state, is almost nothing to do with reducing T_c up to 20% La doping. This is an underlying issue that should be relevant with the nature of SC orderparameter symmetry. In any case, the SC characteristics of "non-conventional" superconductor PrOs₄Sb₁₂ are far from comprehensive understanding at present stage. We will present the results from the microscopic measurements on this novel SC compound.

Figure 1: Temperature dependence of $1/T_1$ for the two samples of $PrOs_4Sb_{12}$.

 H. Kotegawa, M. Yogi, Y. Imamura, Y. Kawasaki, G. -q. Zheng, Y. Kitaoka, S. Ohsaki, H. Sugawara, Y. Aoki, and H. Sato, Phys. Rev. Lett. 90 (2003) 027001.

^[2] K. Izawa, Y. Nakajima, J. Goryo, Y. Matsuda, S. Ohsaki, H. Sugawara, Y. Aoki, H. Sato, P. Thalmeier, and K. Maki, Phys. Rev. Lett. **90** (2003) 117001.