(7b3)

Knight shift studies of unconventional superconductors: perspective of the Knight shift in $PrOs_4Sb_{12}$

H. Tou : AdSM, Hiroshima University, Higashi-Hiroshima 739-8530, Japan

We report the present status of the Knight-shift (K) in $PrOs_4Sb_{12}$, where ¹²¹Sb K (¹²¹K) results of $PrOs_4Sb_{12}$ are compared to the results of other unconventional superconductors. We will also mention the underlying issues and a perspective of the K in $PrOs_4Sb_{12}$.

- $\operatorname{PrOs}_4\operatorname{Sb}_{12}^{11}$ (Odd-parity?): For field parallel to [001] direction, ^{121}K does not change below T_c , suggesting the odd-parity state. The crystal symmetry is T_h ; nevertheless the rotation angle dependence of ^{121}K measurements shows that the ^{121}K for [010] direction changes below T_c . This suggests that the spin-degree of freedom of the Cooper pairs is frozen with a crystal axis though its origin is not clear at present.
- UPt₃²⁾ (Odd-parity): No reduction of ¹⁹⁵Pt-K (¹⁹⁵K) was observed for the C phase, indicating the odd-parity state. At low fields in the B phase, the respective ¹⁹⁵K's for $H \parallel b$ - and c-axis decrease below T_c , whereas ¹⁹⁵K for a-axis does not change across T_c . The change in ¹⁹⁵K for $H \parallel b$ - and c-axis is considerably small, comparable to the KS in pure metal. These results can be interpreted by either the incomplete lock of the **d**-vector to crystal axis or the intrinsic properties in f^2 configuration predicted theoretically.¹⁰
- UNi₂Al₃ ³⁾(Odd-parity): No change of ²⁷Al K (²⁷K) was observed below T_c for $H \perp c$ axis, indicating the odd-parity pairing state.
- URu₂Si₂⁴⁾, UBe₁₃⁵⁾(Odd-parity?): No change of K was observed below T_c , suggesting an odd-parity state. (Detailed K studies have not put forth yet.)
- Sr₂RuO₄ ⁶⁾ (Odd-parity): No change of K was observed below T_c , irrespective of the applied field directions. The **d**-vector rotates freely as $\mathbf{d} \perp H$, suggesting the pinning field for the pairs is not so weak.
- CeCu₂Si₂⁷⁾, UPd₂Al₃⁸⁾, CeCoIn₅⁹⁾, High- T_c cuprates (Even-parity): K's decrease below T_c , irrespective of the applied field direction. Moreover, the fractional decrease of the K is in agreement with the quasi-particle spin susceptibility estimated from the heavy Fermi-liquid relation. These results indicates the even-parity state.

A large part of this work was collaborate with Y. Kitaoka, and K. Ishida. The ¹²¹Knight shift studies were collaborate with M. Doi, M. Sera, M. Yogi, Y. Kitaoka, H. Kotegawa, G. -q. Zheng, H. Harima, H. Sugawara, and H. Sato

- 1) PS23 (this meeting)
- 2) H. Tou et al, Phys. Rev. Lett.77 (1996) 1374
- 3) K. Ishida et al, Phys. Rev. Lett. 89 (2002) 037002.
- 4) Y. Kohori et al, Solid state commun. 95 (1995) 121.
- 5) C. Tien, I. M. Jiang, Phys. Rev. B 40 (1989) 229.
- 6) H. Murakawa, et alPhys. Rev. Lett. 93, 167004 (2004)
- 7) Y. Kitaoka et al, Jpn. J. Appl. Phys. Suppl. 26 (1987) 1221.
- 8) M. Kyogakuet al, J. Phys. Soc. Jpn.62, (1993)
- 9) Y. Kohori et al, Phys. Rev. B 64 (2001) 134526.
- 10) H. Ikeda and K. Miyake, J. Phys. Sos. Jpn. 66 (1997) 3714.