(7a2)

Rattling and heavy fermion superconductivity in clathrate $PrOs_4Sb_{12}$

<u>Y. Nemoto¹</u>, T. Ueno¹, T. Yamaguchi¹, T. Yanagisawa^{1,2}, T. Goto¹, N. Takeda³, H. Sugawara⁴, and H. Sato⁵

¹Graduate School of Science and Technology, Niigata University, Niigata, 950-2181

²Institute for Pure and Applied Physical Science, University of California, San Diego, CA 92037-0319, USA

³Faculty of Engineering, Niigata University, Niigata, 950-2181

⁴Faculty of Integrated Arts and Sciencies, Tokushima University, Tokushima 770-8502

⁵Graduate School of Science, Tokyo Metropolitan University, Hachioji, 192-0397

We presented the elastic constants and ultrasonic attenuation measurements in clathrate $PrOs_4Sb_{12}$. The elastic softening of the $(C_{11} - C_{12})/2$ and C_{44} shows a quadrupolar fluctuation reflecting the 4f² CEF state. The $(C_{11} - C_{12})/2$ in magnetic fields along [110] shows a minimum around 8 T indicating the level crossing of the Γ_1 singlet and one of the $\Gamma_4^{(2)}$ triplet, which is described by one-ion quadrupolar susceptibility in fields [1]. In addition, frequency dependence (ultrasonic dispersion) around 20-30 K has been observed in the elastic constants including $(C_{11}-C_{12})/2$ with Γ_{23} symmetry in part, while in C_{44} with Γ_5 symmetry no ultrasonic dispersion was found. This thermally activated type dispersion is due to the off-center rattling of Pr ion with Γ_{23} symmetry probably characterized along [100] in the cage consisting of Sb icosahedron. Around the dispersion found in the elastic constants, remarkable ultrasonic attenuation was also observed. This result reveals that the transverse ultrasound with Γ_{23} symmetry is considerably scattered by the off-center rattling which is doubly degenerated charge fluctuation state as shown in Fig. 1 [2]. At low temperatures, thermally activated rattling disappears and off-center tunneling state of Pr ion in cage may become apparent. The elastic softening of $(C_{11} - C_{12})/2$ proportional to the reciprocal temperature below 3 K down to the superconducting transition T_C may due to be the tunneling of Pr ion in the Sb icosahedron cage.

Figure 1: The Γ_{23} off-center mode along the [100] direction being responsible for the rattling in $PrOs_4Sb_{12}$.

- [1] T. Goto, Y. Nemoto, K. Onuki, K. Sakai, T. Yamaguchi, M. Akatsu, T. Yanagisawa,
- H. Sugawara, and H. Sato, J. Phys. Soc. Jpn. 74 (2005) 263.
- [2] T. Goto, Y. Nemoto, K. Sakai, T. Yamaguchi, M. Akatsu, T. Yanagisawa, H. Hazama,
- K. Onuki, H. Sugawara, and H. Sato, Phys. Rev. B 69 (2004) 180511(R).