(7a1)

Rattling and tunneling in clathrate compounds

 $\underline{\mathrm{T. \ Goto}}^1$, T. Yamaguchi¹, T. Yanagisawa^{1,2}, T. Ueno¹, Y. Nemoto¹, O. Suzuki³,

H. Kitazawa³, N. Takeda⁴, H. Sugawara⁵, and H. Sato⁶

¹Graduate School of Science and Technology, Niigata University, Niigata, 950-2181

²Institute for Pure and Applied Physical Science, University of California, San Diego, CA 92037-0319, USA

³Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568

⁴Faculty of Engineering, Niigata University, Niigata, 950-2181

⁵Faculty of Integrated Arts and Sciencies, Tokushima University, Tokushima 770-8502

⁶Graduate School of Science, Tokyo Metropolitan University, Hachioji, 192-0397

Recently we have found rattling and tunnelling motions of an off-center guest atom in oversized cage of clathrate crystals.[1-4] The elastic constant C_{44} and attenuation coefficient α_{44} of clathrate crystals $R_3Pd_{20}Ge_6$ with R= La, Ce, Pr, Nd exhibit a Debye-type dispersion around 20 K obeying the relaxation time $\tau = \tau_0 \exp(E/k_B T)$ with an attempt time τ_0 and an activation energy E. This dispersion indicates the rattling of the off-center rare-earth ion over a potential hill with a height of the activation energy E. It is remarkable that the activation energy of E = 70 K for $Ce_3Pd_{20}Ge_6$ is smaller than E = 197 K of $La_3Pd_{20}Ge_6$. Furthermore a relatively slow attempt time $\tau_0 = 3.1 \times 10^{-11}$ s of $Ce_3Pd_{20}Ge_6$ is contrast to $\tau_0 = 2.0 \times 10^{-12}$ s of $La_3Pd_{20}Ge_6$. The present experiments promise that the conduction electrons being mixed strongly to $4f^1$ state of the cerium compound in particular reduces the activation energy and makes slower the attempt time. This fact indicates that the rattling is assisted by the interaction to the conduction electrons, which mixes to the 4f state. It has also been reported the transverse $(C_{11} - C_{12})/2$ mode that in a heavy Fermion superconductor PrOs₄Sb₁₂ exhibits the ultrasonic dispersion due to the rattling of the off-center Pr ion in a Sb-icosahedron.

At low temperatures below 3 K down to 20 mK, the C_{44} of La₃Pd₂₀Ge₆ shows a softening of $C_{44} = C_{44}^0(T - T_C^0)/(T - \Theta)$ with $T_C^0 = -337.970$ mK and $\Theta = -338.044$ mK. Furthermore the specific heat coefficient C/T of La₃Pd₂₀Ge₆ increases considerably with decreasing temperature below 3K down to 100 mK. These facts indicate that the tunnelling through the potential hill in keeping O_h site symmetry in the cage becomes relevant at low temperatures, where the thermally activated rattling over the hill dies out completely. The tunnelling and rattling of the off-center rare-earth ion in the cage accompany the charge fluctuation with T_{2g} symmetry in R₃Pd₂₀Ge₆ and the E_g symmetry in PrOs₄Sb₁₂. The interaction of the off-center tunnelling to the conduction electrons in PrOs₄Sb₁₂ is relevant in particular for the formation of the heavy Fermion state and its superconductivity.

[2] Y. Nemoto, T. Yamaguchi, T. Horino, M. Akatsu, T. Yanagisawa, T. Goto, O.Suzuki, A. Dönni, and T. Komatsubara: Phys. Rev. B 68 (2003) 184109.

[3] T. Goto, Y. Nemoto, T. Yamaguchi, M. Akatsu, T. Yanagisawa, O. Suzuki and H.

Kitazawa: Phys. Rev. B **70** (2004) 184126.

[4] T. Goto, Y. Nemoto, K. Onuki, K. Sakai, T. Yamaguchi, M. Akatsu, T. Yanagisawa,

H. Sugawara, and H. Sato, J. Phys. Soc. Jpn. 74 (2005) 263.

^[1] T. Goto, Y. Nemoto, K. Sakai, T. Yamaguchi, M. Akatsu, T. Yanagisawa, H. Hazama, K. Onuki, H. Sugawara and H. Sato: Phys. Rev. B 69 (2004) 180511.