(6b7)

Synthesis and properties of new filled skutterdites and their related compounds

H. Fukuoka, K. Baba, and M. Yoshikawa

Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527

For the purpose of synthesizing new types of intermetallic compounds having interesting structural and/or physical properties, the use of high-pressure and high-temperature reactions is a promising choice. Recently, a new germanide, LaGe₅, has been discovered by the reaction of constituent elements under 5 GPa and 1200 C. It had a novel sp³-Ge covalent network, and showed superconductivity with a critical temperature Tc = 7.0 K. In the present work, we have investigated reactions of Ge and light rare earth elements, and obtained new germanides having the LaGe₅ structure. We have also tried to prepare new skutterudite compounds containing Ge in the 15 group element network.

[New germanides] Mixtures of Ln and Ge having different atomic ratios were melted with an Ar-filled arc furnace, where Ln = La, Ce, Pr, and Nd. The products were ground in an Ar-filled glove box, and then put into h-BN cells (5 mm in inner diameter and 5 mm in depth). Each cell was placed in a carbon tube heater, and was put in a pyrophyllite cube $(20 \times 20 \times 20 mm^3)$. The cube was pressed and heated in a multi-anvil press at different pressures and temperatures. After the reaction, the cube was quenched to room temperature, and then the pressure was gradually released. Products obtained by the high-pressure treatment were examined by X-ray powder diffraction measurement. All the reactions gave germanides with the LaGe₅ structure, which are listed in Table 1. Two of them, PrGe₅ and NdGe₅, are new compounds. Single crystals of LnGe₅ with Ln = Ce, Pr, and Nd were first obtained in this work and their structures were determined by single X-ray crystal analysis. From the chemical analysis, La, Ce, and Nd compounds were found to be stoichiometric. Only for PrGe₅, the existence of Ge defect was suggested. These germanides except for the La compound were metallic but did not show superconductivity below to 2 K. This would be due to the influence of f electrons on rare earth ions.

[Skutterudite] Mixtures of Ln (= La and Lu), Ru, and Sb (and Ge) were placed in h-BN cells (3 mm in inner diameter and 4 mm in depth). Each cell was wraped in Ta foil, and was placed in an MgO octahedron as a pressure medium. The MgO cell was pressed and heated in a multi anvil press at different pressures and temperatures as the same manner mentioned above. In the Lu-Ru-Sb system, the compound with the skutterudite structure was not obtained even by the reaction under 7 GPa. In La-Ru-Sb-Ge system, a skutterudite compound was obtained. The lattice constant of it was slightly smaller than that of LaRu₄Sb₁₂. The chemical analysis of this compound is now under investigation.

		1 0	0 01
	comp. from EPMA	lattice constants (Å)	conditions
LaGe ₅	1: 4.97	a = 4.0290(6), b = 6.307(1), c = 9.978(2)	5 GPa 1200 °C
$CeGe_5$	1:4.96	a = 4.000(1), b = 6.188(2), c = 9.854(1)	5 GPa 1300 \rightarrow 950 $^{\circ}\mathrm{C}$
$PrGe_5$	1:4.59	a = 3.994(7), b = 6.224(7), c = 9.87(2)	5 GPa 1600 $^{\circ}\mathrm{C}$
NdGe_5	1:5.00	a = 3.977(5), b = 6.180(5), c = 9.825(4)	5 GPa 1200 \rightarrow 900 $^{\circ}\mathrm{C}$

Table 1 Cell constants and preparation conditions of germanides with LaGe₅ type structure