(6a4)

³¹P-NMR and μ SR Studies of Sm-based Phosphide Sm T_4 P₁₂ (T = Fe, Ru and Os)

K. Hachitani¹, <u>Y. Kohori^{1,2}</u>, H. Amanuma², H. Fukazawa^{1,2}, K. Kumagai³, I. Watanabe⁴, C. Sekine⁵ and I. Shirotani⁵

¹Graduate School of Science and Technology, Chiba University, Chiba, 263-8522

²Department of Physics, Faculty of Science, Chiba University, Chiba, 263-8522

³Graduate School of Science, Hokkaido University, Sapporo, 060-0810

⁴Advanced Meson Science Laboratory, RIKEN, Wako, 351-0198

⁵Department of Electrical and Electronic Engineering, Muroran Institute of Technology, Muroran, 050-8585

 SmT_4P_{12} (T = Fe, Ru and Os) have recently attracted much attention for the variety of the physical properties, such as the heavy fermion (HF) behavior, the metal-insulator (M-I) transition, the antiferro-quadrupolar (AFQ) order and the magnetic order (FM/AFM). The electronic states of these compounds have been studied by the ³¹P-NMR and the μ SR.

The HF behavior ($T_{\rm K} = 30$ K) and FM ($T_{\rm C} = 1.6$ K) in SmFe₄P₁₂ and AFM ($T_{\rm N} = 4.6$ K) in SmOs₄P₁₂ have been confirmed from microscopic viewpoints by our ³¹P-NMR and μ SR (at RIKEN-RAL in UK and at PSI in Switzerland). However, SmRu₄P₁₂ system seems to be not so simple [1]. SmRu₄P₁₂ was reported to exhibit the M-I transition at $T_{\rm MI} = 16.5$ K below which two successive transitions occur: AFQ order below 16.5 K and the AFM below 15K, respectively in ZF [2].

The line width of the ³¹P-NMR spectrum rapidly increases below T_{AFQ} (not below T_N). The line shapes are different from those of the typical AFM in SmOs₄P₁₂, and indicate the complicated magnetic structure (Fig. 1). The temperature T dependence of the spin-lattice relaxation rate $1/T_1$ around T_{MI} depends on the applied magnetic field. We have observed the two anomalies in 70 kOe (Fig. 2). In fact, the magnetic field dependences of T_{AFQ} and T_N have been reported [2]. The complicated line-shape structure appears in high fields, which was not observed in low fields.

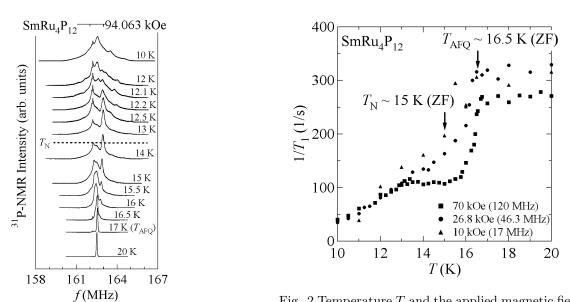


Fig. 1 Temperature dependence (below $T_{\rm MI}$) of the ³¹P-NMR spectrum of SmRu₄P₁₂.

Fig. 2 Temperature T and the applied magnetic field dependences (around $T_{\rm MI}$) of the spin-lattice relaxation rate $1/T_1$ of SmRu₄P₁₂.

^[1] K. Hachitani *et. al*: Journal of the Institute of Pure and Applied Physics (In Press).

^[2] C. Sekine *et. al*: Acta Physica Polonica B **34** (2003) 983.