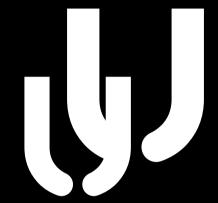
Projective Colourings

a gentle introduction



Rayne Rettich

Kobe Set Theory Seminar, October 15, 2025

About this talk

About this talk

joint work with Luke Serafin

About this talk

- joint work with Luke Serafin
- skip if boring

About this talk

- > joint work with Luke Serafin
- > skip if boring

Assumption

> AC

Definition

Polish space: topological space that is separable (i.e., has a countable dense subset) and completely metrisable.

Definition

Polish space: topological space that is separable (i.e., has a countable dense subset) and completely metrisable. Baire space: ω_{ω} with the product topology.

Definition

Polish space: topological space that is separable (i.e., has a countable dense subset) and completely metrisable. Baire space: ω_{ω} with the product topology.

Facts

Baire space can be mapped continuously onto any Polish space.

Definition

Polish space: topological space that is separable (i.e., has a countable dense subset) and completely metrisable. Baire space: $^{\omega}\omega$ with the product topology.

Facts

Baire space can be mapped continuously onto any Polish space. Every uncountable Polish space has cardinality \mathfrak{c} .

Definition

Graph: pair (V, E) with $E \subseteq V \times V$.

Definition

Graph: pair (V, E) with $E \subseteq V \times V$.

Definition

Elements of V are called vertices, elements of E edges, and two vertices v, w are adjacent if $(v, w) \in E$. The set of all vertices adjacent to v is the neighbourhood Nv of v.

Definition

Graph: pair (V, E) with $E \subseteq V \times V$.

Definition

Let α be a cardinal. An α -colouring of a graph (V, E) is a map $c: V \to \alpha$ such that $\forall v \forall w ((v, w) \in E \rightarrow cv \neq cw)$.

Definition

Elements of V are called *vertices*. elements of E edges, and two vertices v, w are adjacent if $(v, w) \in E$. The set of all vertices adjacent to v is the neighbourhood Nv of v.

Definition

Graph: pair (V, E) with $E \subseteq V \times V$.

Definition

Let α be a cardinal. An α -colouring of a graph (V, E) is a map $c: V \to \alpha$ such that $\forall v \forall w \, ((v, w) \in E \to cv \neq cw)$.

Definition

Elements of V are called vertices, elements of E edges, and two vertices v, w are adjacent if $(v, w) \in E$. The set of all vertices adjacent to v is the $neighbourhood \ Nv$ of v.

Definition

The *chromatic number* of a graph G, written χG , is the unique smallest cardinal α such that G admits an α -colouring.

Definition

Graph: pair (V, E) with $E \subseteq V \times V$.

Definition

Let α be a cardinal. An α -colouring of a graph (V,E) is a map $c:V\to \alpha$ such that $\forall v \forall w \, ((v,w)\in E\to cv\neq cw)$.

Definition

locally finite: every vertex has finitely many neighbours.

Definition

Elements of V are called vertices, elements of E edges, and two vertices v, w are adjacent if $(v, w) \in E$. The set of all vertices adjacent to v is the $neighbourhood \ Nv$ of v.

Definition

The *chromatic number* of a graph G, written χG , is the unique smallest cardinal α such that G admits an α -colouring.

Definition

Graph: pair (V, E) with $E \subseteq V \times V$.

Definition

Let α be a cardinal. An α -colouring of a graph (V,E) is a map $c:V\to \alpha$ such that $\forall v \forall w \, ((v,w)\in E\to cv\neq cw)$.

Definition

locally finite: every vertex has finitely many neighbours. Analogously: locally countable, etc.

Definition

Elements of V are called vertices, elements of E edges, and two vertices v, w are adjacent if $(v, w) \in E$. The set of all vertices adjacent to v is the e

Definition

The chromatic number of a graph G, written χG , is the unique smallest cardinal α such that G admits an α -colouring.

Definition

Borel graph:

Definition

Borel graph: graph (V,E) with V a Polish space and E a Borel subset of $V\times V$.

Definition

Borel graph: graph (V,E) with V a Polish space and E a Borel subset of $V\times V$.

Definition

Borel colouring:

Definition

Borel graph: graph (V,E) with V a Polish space and E a Borel subset of $V\times V$.

Definition

Borel colouring: colouring where each colour class is a Borel subset of V.

Definition

Borel graph: graph (V, E) with V a Polish space and E a Borel subset of $V \times V$.

Definition

Definition

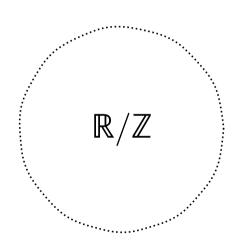
Borel graph: graph (V, E) with V a Polish space and E a Borel subset of $V \times V$.

Definition

Definition

Borel graph: graph (V, E) with V a Polish space and E a Borel subset of $V \times V$.

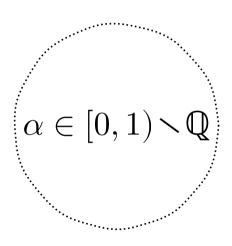
Definition



Definition

Borel graph: graph (V,E) with V a Polish space and E a Borel subset of $V\times V$.

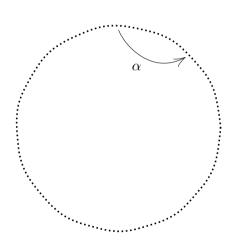
Definition



Definition

Borel graph: graph (V,E) with V a Polish space and E a Borel subset of $V\times V$.

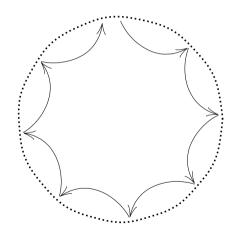
Definition



Definition

Borel graph: graph (V,E) with V a Polish space and E a Borel subset of $V\times V$.

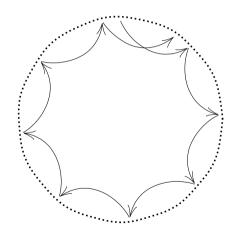
Definition



Definition

Borel graph: graph (V,E) with V a Polish space and E a Borel subset of $V\times V$.

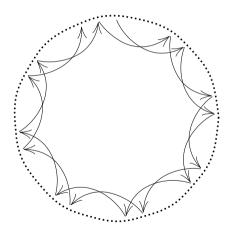
Definition



Definition

Borel graph: graph (V, E) with V a Polish space and E a Borel subset of $V \times V$.

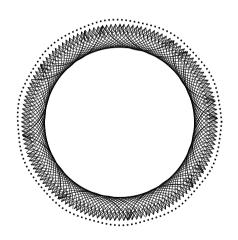
Definition



Definition

Borel graph: graph (V, E) with V a Polish space and E a Borel subset of $V \times V$.

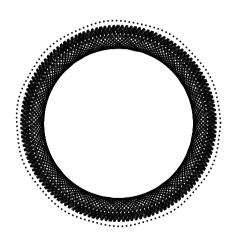
Definition



Definition

Borel graph: graph (V,E) with V a Polish space and E a Borel subset of $V\times V$.

Definition



Definition

 $A\subseteq X$ is analytic or Σ^1_1 if it is continuous image of ${}^\omega\omega$ (or any Polish space).

Definition

 $A \subseteq X$ is analytic or Σ_1^1 if it is continuous image of ω_{ω} (or any Polish space).

Definition

 $A \subseteq X$ is coanalytic or Π^1 if its complement is analytic.

Definition

 $A\subseteq X$ is analytic or Σ^1_1 if it is continuous image of ${}^\omega\omega$ (or any Polish space).

Definition

 $A\subseteq X$ is coanalytic or Π^1_1 if its complement is analytic. More generally, $A\subseteq X$ is Π^1_n if its complement is Σ^1_n .

Definition

 $A\subseteq X$ is analytic or Σ^1_1 if it is continuous image of ${}^\omega\omega$ (or any Polish space).

Definition

 $A\subseteq X$ is $\mathbf{\Sigma}^1_{n+1}$ if there is a Π^1_n subset $B\subseteq X\times {}^\omega\omega$ such that A is the canonical projection of B onto X.

Definition

 $A\subseteq X$ is coanalytic or Π^1_1 if its complement is analytic. More generally, $A\subseteq X$ is Π^1_n if its complement is Σ^1_n .

Definition

 $A\subseteq X$ is analytic or Σ^1_1 if it is continuous image of ${}^\omega\omega$ (or any Polish space).

Definition

 $A\subseteq X$ is $\mathbf{\Sigma}^1_{n+1}$ if there is a Π^1_n subset $B\subseteq X\times {}^\omega\omega$ such that A is the canonical projection of B onto X.

Definition

 $A\subseteq X$ is coanalytic or Π^1_1 if its complement is analytic. More generally, $A\subseteq X$ is Π^1_n if its complement is Σ^1_n .

Definition

 $A\subseteq X$ is $\pmb{\Delta}_n^1$ if it is both $\pmb{\Pi}_n^1$ and $\pmb{\Sigma}_n^1$.

Theorem (Suslin)

A set is Borel if and only if it is Δ_1^1 .

Definition

Let **P** be a pointclass.

Definition

Let ${\bf P}$ be a pointclass. A graph (V,E) is a ${\bf P}$ class graph (or ${\bf P}$ graph for short) if V is a Polish space and E is a ${\bf P}$ subset of $V\times V$.

Definition

Let **P** be a pointclass. A graph (V, E) is a **P** class graph (or **P** graph for short) if V is a Polish space and E is a **P** subset of $V \times V$.

Of course

Let \mathbf{P} , \mathbf{Q} be pointclasses. If G is a \mathbf{P} class graph and $P \subseteq Q$, then G is a Q class graph as well.

Definition

Let **P** be a pointclass. A graph (V, E) is a **P** class graph (or **P** graph for short) if V is a Polish space and E is a **P** subset of $V \times V$.

Definition

Let **P** be a pointclass and α a cardinal.

Of course

Let \mathbf{P} , \mathbf{Q} be pointclasses. If G is a \mathbf{P} class graph and $P \subseteq Q$, then G is a Q class graph as well.

Definition

Let ${\bf P}$ be a pointclass. A graph (V,E) is a ${\bf P}$ class graph (or ${\bf P}$ graph for short) if V is a Polish space and E is a ${\bf P}$ subset of $V\times V$.

Definition

Let **P** be a pointclass and α a cardinal. A **P** class α -colouring (or **P** colouring for short) is an α -colouring where each colour class is a **P** subset of V.

Of course

Let \mathbf{P} , \mathbf{Q} be pointclasses. If G is a \mathbf{P} class graph and $\mathbf{P} \subseteq \mathbf{Q}$, then G is a \mathbf{Q} class graph as well.

Definition

Let ${\bf P}$ be a pointclass. A graph (V,E) is a ${\bf P}$ class graph (or ${\bf P}$ graph for short) if V is a Polish space and E is a ${\bf P}$ subset of $V\times V$.

Definition

Let **P** be a pointclass and α a cardinal. A **P** class α -colouring (or **P** colouring for short) is an α -colouring where each colour class is a **P** subset of V.

Of course

Let \mathbf{P} , \mathbf{Q} be pointclasses. If G is a \mathbf{P} class graph and $\mathbf{P} \subseteq \mathbf{Q}$, then G is a \mathbf{Q} class graph as well. The same goes for colourings.

Definition

Let ${\bf P}$ be a pointclass. A graph (V,E) is a ${\bf P}$ class graph (or ${\bf P}$ graph for short) if V is a Polish space and E is a ${\bf P}$ subset of $V\times V$.

Definition

Let **P** be a pointclass and α a cardinal. A **P** class α -colouring (or **P** colouring for short) is an α -colouring where each colour class is a **P** subset of V.

Of course

Let \mathbf{P} , \mathbf{Q} be pointclasses. If G is a \mathbf{P} class graph and $\mathbf{P} \subseteq \mathbf{Q}$, then G is a \mathbf{Q} class graph as well. The same goes for colourings.

Definition

Let ${\bf P}$ be a pointclass and G any graph. The ${\bf P}$ class chromatic number of G, written $\chi_{\bf P}G$, is the smallest cardinal α such that G admits a ${\bf P}$ class colouring.

Facts (easy)

Let $\mathbf{P} \in \{\Pi, \Sigma, \Delta\}$, $n \in \mathbb{N}_{>0}$, and let G be any graph.

Facts (easy)

Let $\mathbf{P} \in \{\Pi, \Sigma, \Delta\}$, $n \in \mathbb{N}_{>0}$, and let G be any graph.

 $\chi_{\mathbf{P}_n^1} \geq \chi$

Facts (easy)

Let $\mathbf{P} \in \{\Pi, \Sigma, \Delta\}$, $n \in \mathbb{N}_{>0}$, and let G be any graph.

- $> \chi_{\mathbf{P}_{n}^{1}} \geq \chi$
- $\chi_{\mathbf{P}_n^1} \leq \chi_B$

Facts (easy)

Let $\mathbf{P} \in \{\Pi, \Sigma, \Delta\}$, $n \in \mathbb{N}_{>0}$, and let G be any graph.

- $\chi_{\mathbf{P}_n^1} \geq \chi$
- $\chi_{\mathbf{P}_n^1} \leq \chi_B$

Facts (easy)

Let $\mathbf{P} \in \{\Pi, \Sigma, \Delta\}$, $n \in \mathbb{N}_{>0}$, and let G be any graph.

- $\chi_{\mathbf{P}_n^1} \geq \chi$
- $\chi_{\mathbf{P}_n^1} \leq \chi_B$

Facts (advanced)

 $\begin{array}{ll} > \ \ \mbox{both} \ \chi_{{\Delta^1_2}}G \leq \chi_{\mu}G \ \mbox{and} \ \chi_{{\Delta^1_2}}G \geq \chi_{\mu}G \\ \mbox{are consistent with ZFC} \end{array}$

Facts (easy)

Let $\mathbf{P} \in \{\Pi, \Sigma, \Delta\}, n \in \mathbb{N}_{>0}$ and let Gbe any graph.

- $\chi_{\mathbf{P}^1} \geq \chi$
- $\chi_{\mathbf{P}_n^1} \leq \chi_B$

Facts (advanced)

- both $\chi_{\Lambda_0^1}G \leq \chi_{\mu}G$ and $\chi_{\Lambda_0^1}G \geq \chi_{\mu}G$ are consistent with ZFC
- if $\chi_{\Lambda_0^1}G \geq \alpha$ in a model M, then α is a lower bound for $\chi_{\Lambda_0^1}G$ in any generic extension of M

Facts (easy)

Let $\mathbf{P} \in \{\Pi, \Sigma, \Delta\}$, $n \in \mathbb{N}_{>0}$, and let G be any graph.

- $\chi_{\mathbf{P}_n^1} \geq \chi$
- $\chi_{\mathbf{P}_n^1} \leq \chi_B$

Facts (advanced)

- $> \text{ both } \chi_{\mathbf{\Delta}_2^1}G \leq \chi_{\mu}G \text{ and } \chi_{\mathbf{\Delta}_2^1}G \geq \chi_{\mu}G$ are consistent with ZFC
- $\text{if } \chi_{\mathbf{\Delta}_2^1}G \geq \alpha \text{ in a model } M \text{, then } \alpha \text{ is a lower bound for } \chi_{\mathbf{\Delta}_2^1}G \text{ in any generic extension of } M$

Question

What is the consistency strength of

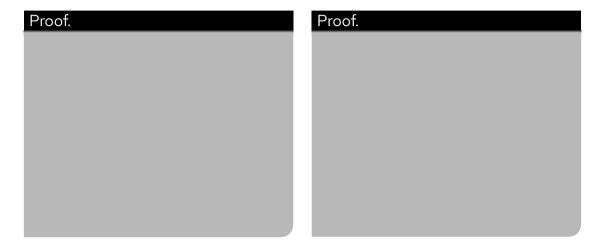
$$\exists G \, (\chi G < \chi_{\Delta_2^1} G < \chi_B G)?$$

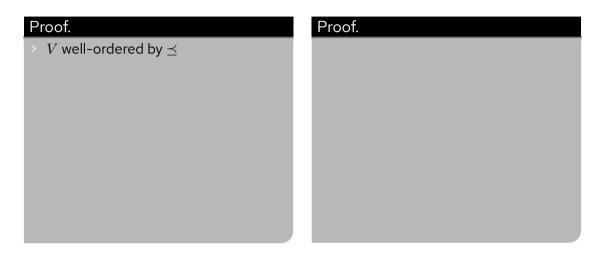
What if G must be a Borel graph?

Well-Ordered Spaces

Theorem (R., Serafin)

Let $n \in \mathbb{N}$, $n \geq 2$, and let $\mathbf{P} \in \{\Delta, \Pi, \Sigma\}$. In a model of ZFC in which there is a \mathbf{P}_n^1 well-order of ω (and hence of any Polish space), for any locally countable \mathbf{P}_n^1 class graph G we have $\chi_{\mathbf{P}^1}G = \chi G$.





Proof. V well-ordered by \leq $oldsymbol{\exists}_v$: conn. comp. of v

Proof.

- > V well-ordered by \leq
- \rightarrow \mathbf{H}_v : conn. comp. of v

Proof.

 $C_v \coloneqq \{a: a \subseteq \mathbf{H}_v \times \omega,$

Proof.

- >V well-ordered by \leq
- \rightarrow \exists_v : conn. comp. of v

$$\begin{split} C_v &:= \{a: a \subseteq \mathbf{H}_v \times \omega, \\ \forall v \in \mathbf{H}_v \forall n \in \omega \\ & ((v,n) \in a \rightarrow \neg \exists m \in \omega \\ & (n \neq m \land (v,m) \in a))\} \end{split}$$

Proof.

- >V well-ordered by \leq
- > \mathbf{a}_v : conn. comp. of v

$$\begin{split} C_v \coloneqq \{a: a \subseteq \mathbf{H}_v \times \omega, \\ \forall v \in \mathbf{H}_v \forall n \in \omega \\ ((v,n) \in a \to \neg \exists m \in \omega \\ (n \neq m \land (v,m) \in a))\} \\ \subseteq \omega^{\mathbf{H}_v} = \omega \times \omega \times \dots \end{split}$$

Well-Ordered Spaces

Proof.

- >V well-ordered by \leq
- \rightarrow \mathbf{H}_v : conn. comp. of v

Proof.

$$\begin{split} C_v &\coloneqq \{a: a \subseteq \mathbf{H}_v \times \omega, \\ \forall v \in \mathbf{H}_v \forall n \in \omega \\ &((v,n) \in a \to \neg \exists m \in \omega \\ &(n \neq m \land (v,m) \in a))\} \\ &\subset \omega^{\mathbf{H}_v} = \omega \times \omega \times \dots \end{split}$$

 ω^{H_v} is a Polish space well-ordered by \sqsubseteq .

- > V well-ordered by \leq
- \rightarrow \mathbf{H}_v : conn. comp. of v
- $\geq C_v \ni \{\,(x,n): x \in \mathbf{H}_v \text{uniq.}, n \in \omega\,\}$

Proof.

- > V well-ordered by \leq
- > 目 $_v$: conn. comp. of v
- $\geq C_v \ni \{\,(x,n): x \in \mathbf{H}_v \text{uniq.}, n \in \omega\,\}$
- $> C_v$ well-ordered by \sqsubseteq

Proof.

- V well-ordered by \leq
- 目 $_{u}$: conn. comp. of v
- $C_n \ni \{(x,n) : x \in \mathbf{H}_n \text{uniq.}, n \in \omega\}$
- $> C_n$ well-ordered by \sqsubseteq

Proof.

define new well-order \sqsubseteq on C_n by stratification over the second coordinate:

Proof.

- V well-ordered by \leq
- 目 $_{u}$: conn. comp. of v
- $C_n \ni \{(x,n) : x \in \mathbf{H}_n \text{ uniq.}, n \in \omega \}$
- C_{a} , well-ordered by \square

Proof.

define new well-order \sqsubseteq on C_n by stratification over the second coordinate:

 $a \sqsubset b$ if and only if the lowest upper bound on $\pi_2 a$ is strictly smaller than that on $\pi_2 b$ or if they are equal but $a \sqsubset b$.

Proof.

- $\succ V$ well-ordered by \preceq
- > 目 $_v$: conn. comp. of v
- $\geq C_v \ni \{\,(x,n): x \in \mathbf{H}_v \text{uniq.}, n \in \omega\,\}$
- $\succ C_v$ well-ordered by \sqsubseteq , \sqsubseteq (stratified)

Well-Ordered Spaces

Proof.

- >V well-ordered by \leq
- > \mathbf{H}_v : conn. comp. of v
- ${\cal C}_v
 ightarrow \{(x,n): x \in {f H}_v {
 m uniq.}, n \in \omega\}$
- C_v well-ordered by \sqsubseteq , \sqsubseteq (stratified)

```
\begin{split} & \downarrow \!\! a := \!\! \kappa \in \omega + 1 : \forall x \in \mathbf{H}_v \forall n \in \omega \\ & ((x,n) \in a \to n \leq \kappa) \\ & \wedge \forall N \in \omega \, (\forall x \in \mathbf{H}_v \forall n \in \omega \\ & ((x,n) \in a \to n \leq N) \to N \geq \kappa), \end{split}
```

$$a \sqsubset b \leftrightarrow \downarrow a < \downarrow b \lor (\downarrow a = \downarrow b \land a \sqsubset b)$$

Proof.

- $\succ V$ well-ordered by \preceq
- > 目 $_v$: conn. comp. of v
- $\geq C_v \ni \{\,(x,n): x \in \mathbf{H}_v \text{uniq.}, n \in \omega\,\}$
- $\succ C_v$ well-ordered by \sqsubseteq , \sqsubseteq (stratified)

Proof.

- >V well-ordered by \preceq
- \rightarrow **目**_v: conn. comp. of v
- $\geq C_v \ni \{\,(x,n): x \in \mathbf{H}_v \text{uniq.}, n \in \omega\,\}$
- C_v well-ordered by \sqsubseteq , \sqsubseteq (stratified)

Proof.

 $a \in C_v$ is a v-palette if:

Proof.

- >V well-ordered by \preceq
- \rightarrow 目 $_v$: conn. comp. of v
- $C_v
 ightarrow \{(x,n): x \in \mathbf{H}_v \text{uniq.}, n \in \omega\}$
- C_v well-ordered by \sqsubseteq , \sqsubseteq (stratified)

Proof.

 $a \in C_v$ is a v-palette if:

 $\forall x \in \mathbf{H}_{n} (\exists n \in \omega ((x, n) \in a).$

Proof.

- >V well-ordered by \preceq
- \rightarrow 目 $_v$: conn. comp. of v
- ${}> C_v \ni \{\,(x,n): x \in \mathbf{H}_v \text{uniq.}, n \in \omega\,\}$
- C_v well-ordered by \sqsubseteq , \sqsubseteq (stratified)

Proof.

 $a \in C_v$ is a v-palette if:

- $\Rightarrow \forall x \in \mathbf{H}_v (\exists n \in \omega ((x, n) \in a).$
- $\begin{array}{ll} \geq & \forall x \in \mathbf{H}_v \forall n \in \omega \\ & ((x,n) \in a \rightarrow \forall y \in \mathsf{N}x \, ((y,n) \not \in a)). \end{array}$

Proof.

- >V well-ordered by \preceq
- \rightarrow 目 $_v$: conn. comp. of v
- ${\cal C}_v
 i \{\, (x,n) : x \in {f H}_v ext{uniq.}, n \in \omega \,\}$
- C_v well-ordered by \sqsubseteq , \sqsubseteq (stratified)

Proof.

 $a \in C_v$ is a v-palette if:

- $\Rightarrow \forall x \in \mathbf{H}_v (\exists n \in \omega ((x, n) \in a).$
 - $\begin{array}{l} \forall x \in \mathbf{H}_v \forall n \in \omega \\ ((x,n) \in a \rightarrow \forall y \in \mathsf{N}x \, ((y,n) \notin a)). \end{array}$

Know:

Well-Ordered Spaces

Proof.

- >V well-ordered by \preceq
- > \mathbf{H}_v : conn. comp. of v
- ${\cal C}_v
 ightarrow \{(x,n): x \in {f H}_v \text{uniq.}, n \in \omega\}$
- C_v well-ordered by \sqsubseteq , \sqsubseteq (stratified)

Proof.

 $a \in C_v$ is a v-palette if:

- $\forall x \in \mathbf{H}_v (\exists n \in \omega ((x, n) \in a).$
- $\begin{array}{ll} \geq & \forall x \in \mathbf{H}_v \forall n \in \omega \\ & ((x,n) \in a \rightarrow \forall y \in \mathsf{N}x \, ((y,n) \notin a)). \end{array}$

Know:

> classical \aleph_0 -colouring of G restricted to \mathbf{B}_v is a v-palette

Well-Ordered Spaces

Proof.

- >V well-ordered by \preceq
- \rightarrow 目 $_v$: conn. comp. of v
- ${}> C_v \ni \{\,(x,n): x \in \mathbf{H}_v \text{uniq.}, n \in \omega\,\}$
- C_v well-ordered by \sqsubseteq , \sqsubseteq (stratified)

Proof.

 $a \in C_v$ is a v-palette if:

- $\forall x \in \mathbf{H}_v (\exists n \in \omega ((x, n) \in a).$
- $\begin{array}{ll} \geq & \forall x \in \mathbf{H}_v \forall n \in \omega \\ & ((x,n) \in a \rightarrow \forall y \in \mathsf{N}x \, ((y,n) \notin a)). \end{array}$

Know:

- > classical \aleph_0 -colouring of G restricted to \mathbf{B}_v is a v-palette
- by assumption, at least one such colouring exists → every vertex has at least one palette

Well-Ordered Spaces

Proof.

- >V well-ordered by \preceq
- > 目 $_v$: conn. comp. of v
- $> C_v \ni \{\,(x,n): x \in \mathbf{H}_v \text{uniq.}, n \in \omega\,\}$
- C_v well-ordered by \sqsubseteq , \sqsubseteq (stratified)

Proof.

 $a \in C_v$ is a v-palette if:

- $\Rightarrow \forall x \in \mathbf{H}_v \ (\exists n \in \omega \ ((x,n) \in a).$
- $\begin{array}{ll} \geq & \forall x \in \mathbf{H}_v \forall n \in \omega \\ & ((x,n) \in a \rightarrow \forall y \in \mathsf{N}x \, ((y,n) \notin a)). \end{array}$

Know:

> both conditions are \mathbf{P}_n^1 -definable \rightarrow set of all v-palettes is a \mathbf{P}_n^1 subset of C_v .

Proof.

- >V well-ordered by \leq
- \rightarrow 目 $_v$: conn. comp. of v
- $C_v
 ightarrow \{(x,n): x \in \mathbf{H}_v \text{uniq.}, n \in \omega\}$
- C_v well-ordered by \sqsubseteq , \sqsubseteq (stratified)
- $a \in C_v$ is a v-palette if:
 - $\forall x \in \mathbf{H}_v \ (\exists n \in \omega \ ((x,n) \in a).$
 - $\begin{array}{ll} \geq & \forall x \in \mathbf{B}_v \forall n \in \omega \\ & ((x,n) \in a \rightarrow \forall y \in \mathsf{N}x \, ((y,n) \not \in a)). \end{array}$

Proof.

- >V well-ordered by \leq
- > \mathbf{H}_v : conn. comp. of v
- $C_v
 ightarrow \{(x,n): x \in \mathbf{H}_v \text{uniq.}, n \in \omega\}$
- C_v well-ordered by \sqsubseteq , \sqsubseteq (stratified)
- $a \in C_v$ is a v-palette if:
 - $> \ \forall x \in \mathbf{H}_v \, (\exists n \in \omega \, ((x,n) \in a).$
 - $\begin{array}{ll} \geq & \forall x \in \mathbf{H}_v \forall n \in \omega \\ & ((x,n) \in a \rightarrow \forall y \in \mathsf{N}x \, ((y,n) \not \in a)). \end{array}$

Proof.

define C_v to be the \sqsubseteq -least v-palette.

Proof.

- >V well-ordered by \preceq
- \rightarrow 目 $_v$: conn. comp. of v
- $C_v
 ightarrow \{(x,n): x \in \mathbf{H}_v \text{uniq.}, n \in \omega\}$
- C_v well-ordered by \sqsubseteq , \sqsubseteq (stratified)
- $a \in C_v$ is a v-palette if:
 - $\Rightarrow \ \forall x \in \mathbf{H}_v \ (\exists n \in \omega \ ((x,n) \in a).$
 - $\begin{array}{ll} \geq & \forall x \in \mathbf{H}_v \forall n \in \omega \\ & ((x,n) \in a \rightarrow \forall y \in \mathsf{N}x \, ((y,n) \not \in a)). \end{array}$
- \succ C_v is the \sqsubseteq -least v-palette

Proof.

define C_v to be the \sqsubseteq -least v-palette.

Proof.

- >V well-ordered by \preceq
- \rightarrow 目 $_v$: conn. comp. of v
- $C_v
 ightarrow \{(x,n): x \in \mathbf{H}_v \text{uniq.}, n \in \omega\}$
- C_v well-ordered by \sqsubseteq , \sqsubseteq (stratified)
- $a \in C_v$ is a v-palette if:
 - $\Rightarrow \ \forall x \in \mathbf{H}_v \ (\exists n \in \omega \ ((x,n) \in a).$
 - $\begin{array}{ll} \geq & \forall x \in \mathbf{H}_v \forall n \in \omega \\ & ((x,n) \in a \rightarrow \forall y \in \mathsf{N}x \, ((y,n) \not \in a)). \end{array}$
- \succ C_v is the \sqsubseteq -least v-palette
- $C := \{ C_v : v \in V \}$

Proof.

define C_v to be the \sqsubseteq -least v-palette.

Proof.

- >V well-ordered by \preceq
- \rightarrow 目 $_v$: conn. comp. of v
- $\Rightarrow \ C_v \ni \{\,(x,n): x \in \mathbf{H}_v \text{uniq.}, n \in \omega\,\}$
- C_v well-ordered by \sqsubseteq , \sqsubseteq (stratified)
- $a \in C_v$ is a v-palette if:
 - $\Rightarrow \ \forall x \in \mathbf{H}_v \ (\exists n \in \omega \ ((x,n) \in a).$
 - $\begin{array}{ll} \geq & \forall x \in \mathbf{H}_v \forall n \in \omega \\ & ((x,n) \in a \rightarrow \forall y \in \mathsf{N}x \, ((y,n) \not \in a)). \end{array}$
- $ightarrow C_v$ is the \sqsubseteq -least v-palette
- \rightarrow $C := \{ C_v : v \in V \} \approx V$

Proof.

define C_v to be the \sqsubseteq -least v-palette. identify $C := \{C_v : v \in V\}$ with V in the natural way, turning it into a Polish space.

Proof.

- >V well-ordered by \leq
- \rightarrow 目 $_v$: conn. comp. of v
- $C_v
 ightarrow \{(x,n): x \in \mathbf{H}_v \text{uniq.}, n \in \omega\}$
- C_v well-ordered by \sqsubseteq , \sqsubseteq (stratified)
- $a \in C_v$ is a v-palette if:
- $\forall x \in \mathbf{H}_v (\exists n \in \omega ((x, n) \in a).$
 - $\forall x \in \mathbf{H}_v \forall n \in \omega$ $((x, n) \in a \rightarrow \forall n \in \mathbb{N}$
 - $((x,n)\in a\to \forall y\in \mathsf{N}x\,((y,n)\notin a)).$
- $ightarrow C_v$ is the \sqsubseteq -least v-palette
- \rightarrow $C := \{ C_v : v \in V \} \approx V$

Proof.

- >V well-ordered by \leq
- \rightarrow \mathbf{a}_v : conn. comp. of v
- ${}> C_v \ni \{\,(x,n): x \in \mathbf{H}_v \text{uniq.}, n \in \omega\,\}$
- C_v well-ordered by \sqsubseteq , \sqsubseteq (stratified)
- $a \in C_v$ is a v-palette if:
 - $\Rightarrow \ \forall x \in \mathbf{H}_v \ (\exists n \in \omega \ ((x,n) \in a).$
 - $\forall x \in \mathbf{H}_v \forall n \in \omega \\ ((x,n) \in a \rightarrow \forall y \in \mathsf{N}x \, ((y,n) \not\in a)).$
- $ightarrow C_v$ is the \sqsubseteq -least v-palette
- \rightarrow $C := \{ C_v : v \in V \} \approx V$

Proof.

 $d: V \to V \times V, v \mapsto (v, v)$

Proof.

- >V well-ordered by \leq
- \rightarrow \mathbf{a}_v : conn. comp. of v
- ${}> C_v \ni \{\,(x,n): x \in \mathbf{H}_v \text{uniq.}, n \in \omega\,\}$
- C_v well-ordered by \sqsubseteq , \sqsubseteq (stratified)
- $a \in C_v$ is a v-palette if:
 - $\forall x \in \mathbf{H}_v \ (\exists n \in \omega \ ((x,n) \in a).$
 - $\begin{array}{ll} \geq & \forall x \in \mathbf{H}_v \forall n \in \omega \\ & ((x,n) \in a \rightarrow \forall y \in \mathsf{N}x \, ((y,n) \not \in a)). \end{array}$
- $ightarrow C_v$ is the \sqsubseteq -least v-palette
- \rightarrow $C := \{ C_v : v \in V \} \approx V$

- $> d: V \to V \times V, v \mapsto (v, v)$
- $\Rightarrow \ \varphi: V \to V, v \mapsto \min_{\preceq} \mathbf{A}_v$

Proof.

- >V well-ordered by \preceq
- \rightarrow 目 $_v$: conn. comp. of v
- $C_v
 ightarrow \{(x,n):x\in \mathbf{H}_v ext{uniq.}, n\in\omega\}$
- C_v well-ordered by \sqsubseteq , \sqsubseteq (stratified)
- $a \in C_v$ is a v-palette if:
 - $\forall x \in \mathbf{H}_v \ (\exists n \in \omega \ ((x,n) \in a).$
 - $\begin{array}{ll} \geq & \forall x \in \mathbf{H}_v \forall n \in \omega \\ & ((x,n) \in a \rightarrow \forall y \in \mathsf{N}x \, ((y,n) \not \in a)). \end{array}$
- $ightarrow C_v$ is the \sqsubseteq -least v-palette
- \rightarrow $C := \{ C_v : v \in V \} \approx V$

- $\Rightarrow d: V \to V \times V, v \mapsto (v, v)$
- $\Rightarrow \ \varphi: V o V, v \mapsto \min_{\prec} \mathbf{B}_v$
- $\Rightarrow \bar{\varphi}: V \times V \to V \times V, (v, w) \mapsto (v, \varphi w)$

Proof.

- >V well-ordered by \preceq
- \rightarrow $m{\mathsf{H}}_v$: conn. comp. of v
- $C_v
 ightarrow \{(x,n):x\in \mathbf{H}_v ext{uniq.}, n\in\omega\}$
- $> C_v$ well-ordered by \sqsubseteq , \sqsubseteq (stratified)
- $a \in C_v$ is a v-palette if:
 - $\Rightarrow \ \forall x \in \mathbf{H}_v \ (\exists n \in \omega \ ((x,n) \in a).$
 - $\begin{array}{ll} \geq & \forall x \in \mathbf{H}_v \forall n \in \omega \\ & ((x,n) \in a \rightarrow \forall y \in \mathsf{N}x \, ((y,n) \not \in a)). \end{array}$
- $ightarrow C_v$ is the \sqsubseteq -least v-palette
- \rightarrow $C := \{ C_v : v \in V \} \approx V$

- $\Rightarrow d: V \to V \times V, v \mapsto (v, v)$
- $\Rightarrow \ \varphi: V \to V, v \mapsto \min_{\prec} \mathbf{B}_v$
- $\Rightarrow \bar{\varphi}: V \times V \to V \times V, (v, w) \mapsto (v, \varphi w)$
- $p: V \to {\color{red} {m C}}, v \mapsto {\color{red} {m C}}_v$

Proof.

- >V well-ordered by \preceq
- \rightarrow $m{a}_v$: conn. comp. of v
- $C_v
 ightarrow \{(x,n): x \in \mathbf{H}_v \text{uniq.}, n \in \omega\}$
- C_v well-ordered by \sqsubseteq , \sqsubseteq (stratified)
- $a \in C_v$ is a v-palette if:
 - $\forall x \in \mathbf{H}_v \ (\exists n \in \omega \ ((x,n) \in a).$
 - $\begin{array}{ll} \geq & \forall x \in \mathbf{H}_v \forall n \in \omega \\ & ((x,n) \in a \rightarrow \forall y \in \mathsf{N}x \, ((y,n) \not \in a)). \end{array}$
- $ightarrow C_v$ is the \sqsubseteq -least v-palette
- \rightarrow $C := \{ C_v : v \in V \} \approx V$

- $d: V \to V \times V, v \mapsto (v, v)$
- $\Rightarrow \ \varphi: V \to V, v \mapsto \min_{\prec} \mathbf{B}_v$
- $\Rightarrow \ \bar{\varphi}: V \times V \to V \times V, (v, w) \mapsto (v, \varphi w)$
- $p: V \to {\color{red} {C}}, v \mapsto {\color{red} {C}}_v$
- $\bar{p}: V \times V \to V \times {\color{red} C}, (v,w) \mapsto (v,pw)$

Proof.

- >V well-ordered by \preceq
- \rightarrow \mathbf{a}_v : conn. comp. of v
- $> C_v \ni \{\,(x,n): x \in \mathbf{H}_v \text{uniq.}, n \in \omega\,\}$
- C_v well-ordered by \sqsubseteq , \sqsubseteq (stratified)
- $> a \in C_v$ is a v-palette if:
 - $\Rightarrow \ \forall x \in \mathbf{H}_v \, (\exists n \in \omega \, ((x,n) \in a).$
 - $\begin{array}{ll} \forall \, x \in \mathbf{B}_v \forall n \in \omega \\ & ((x,n) \in a \rightarrow \forall y \in \mathsf{N}x \, ((y,n) \not \in a)). \end{array}$
- $ightarrow C_v$ is the \sqsubseteq -least v-palette
- \rightarrow $C := \{ C_v : v \in V \} \approx V$

- $\Rightarrow d: V \to V \times V, v \mapsto (v, v)$
- $\geq \varphi: V \to V, v \mapsto \min_{\prec} \mathbf{A}_v$
- $\geq \bar{\varphi}: V \times V \to V \times V, (v, w) \mapsto (v, \varphi w)$
- $p: V \to {\color{red} {m C}}, v \mapsto {\color{red} {m C}}_v$
- $\bar{p}: V \times V \to V \times {\color{red} C}, (v,w) \mapsto (v,pw)$
- $\begin{array}{ll} > & m: V \times {\color{red} {C}} \rightarrow \omega + 1 \text{ maps } (x, {\color{red} {C}}_v) \text{ to} \\ & \text{the unique } n \text{ s.t. } (x, n) \in {\color{red} {C}}_v \text{ or to } \omega \text{ if} \\ & \text{no such } n \text{ exists} \end{array}$

Proof.

- >V well-ordered by \leq
- \rightarrow \mathbf{a}_v : conn. comp. of v
- $> C_v \ni \{\,(x,n): x \in \mathbf{H}_v \text{uniq.}, n \in \omega\,\}$
- C_v well-ordered by \sqsubseteq , \sqsubseteq (stratified)
- $> a \in C_v$ is a v-palette if:
 - $\Rightarrow \ \forall x \in \mathbf{H}_v \ (\exists n \in \omega \ ((x,n) \in a).$
 - $\begin{array}{ll} \geq & \forall x \in \mathbf{B}_v \forall n \in \omega \\ & ((x,n) \in a \rightarrow \forall y \in \mathsf{N}x \, ((y,n) \not \in a)). \end{array}$
- > C_v is the \sqsubseteq -least v-palette
- \rightarrow $C := \{ C_v : v \in V \} \approx V$

- $\Rightarrow d: V \to V \times V, v \mapsto (v, v)$
- $\geq \bar{\varphi}: V \times V \to V \times V, (v, w) \mapsto (v, \varphi w)$
- $p: V \to {\color{red} {C}}, v \mapsto {\color{red} {C}}_v$
- $\bar{p}: V \times V \to V \times {\color{red} C}, (v,w) \mapsto (v,pw)$
- $m: V \times {\color{red} {m C}} o \omega + 1 \ {
 m maps} \ (x, {\color{red} {m C}}_v) \ {
 m to}$ the unique n s.t. $(x,n) \in {\color{red} {m C}}_v$ or to ω if no such n exists
- $c := m\bar{p}\bar{\varphi}d: V \to \omega + 1$

Theorem (R., Serafin)

Let $n \in \mathbb{N}$, $n \geq 2$, and let $\mathbf{P} \in \{\Delta, \Pi, \Sigma\}$. In a model of ZFC in which there is a \mathbf{P}_n^1 well-order of ω_{ω} (and hence of any Polish space), for any locally countable \mathbf{P}^1 class graph G we have $\chi_{\mathbf{P}_{-}^{1}}G=\chi G$.

Theorem (R., Serafin)

Let $n \in \mathbb{N}$, $n \geq 2$, and let $\mathbf{P} \in \{\Delta, \Pi, \Sigma\}$. In a model of ZFC in which there is a \mathbf{P}_n^1 well-order of ω (and hence of any Polish space), for any locally countable \mathbf{P}_n^1 class graph G we have $\chi_{\mathbf{P}_n^1}G = \chi G$.

Theorem (R., Serafin)

Let $\mathbf{P} \in \{\Delta_2^1, \Sigma_2^1\}$. In a model of ZFC in which there is a \mathbf{P} well-order of ω (and hence of any Polish space), for any \mathbf{P} class graph G we have $\chi_{\mathbf{P}}G = \chi G$.

Theorem (R., Serafin)

Let $n \in \mathbb{N}$, $n \geq 2$, and let $\mathbf{P} \in \{\Delta, \Pi, \Sigma\}$. In a model of ZFC in which there is a \mathbf{P}_n^1 well-order of ω (and hence of any Polish space), for any locally countable \mathbf{P}_n^1 class graph G we have $\chi_{\mathbf{P}_n^1}G = \chi G$.

Theorem (R., Serafin)

Let $\mathbf{P} \in \{\Delta_2^1, \Sigma_2^1\}$. In a model of ZFC in which there is a \mathbf{P} well-order of ω (and hence of any Polish space), for any \mathbf{P} class graph G we have $\chi_{\mathbf{P}}G = \chi G$.

Conjecture

Let G be any Borel graph. In any model of ZFC+PD, we have $\chi_{\Lambda_2^1}G \in \{\chi G, \chi_B G\}$.

Question

Is there a model where a Borel graph G exists with $\chi G < \chi_{\Delta_2^1} G < \chi_B G$? If so, what is the consistency strength of the existence of such a graph?