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Preliminaries

About this talk

> joint work with Luke Serafin

> skip if boring

Assumption

> AC

2/13 Kobe Set Theory Seminar, October 15, 2025 Rayne Rettich Projective Colourings



Preliminaries

About this talk

> joint work with Luke Serafin

> skip if boring

Assumption

> AC

2/13 Kobe Set Theory Seminar, October 15, 2025 Rayne Rettich Projective Colourings



Preliminaries

About this talk

> joint work with Luke Serafin

> skip if boring

Assumption

> AC

2/13 Kobe Set Theory Seminar, October 15, 2025 Rayne Rettich Projective Colourings



Preliminaries

About this talk

> joint work with Luke Serafin

> skip if boring

Assumption

> AC

2/13 Kobe Set Theory Seminar, October 15, 2025 Rayne Rettich Projective Colourings



Preliminaries

About this talk

> joint work with Luke Serafin

> skip if boring

Assumption

> AC

2/13 Kobe Set Theory Seminar, October 15, 2025 Rayne Rettich Projective Colourings



Polish Spaces

Definition

Polish space: topological space that is

separable (i.e., has a countable dense

subset) and completely metrisable.

Baire space: 𝜔𝜔 with the product

topology.

Facts

Baire space can be mapped

continuously onto any Polish space.

Every uncountable Polish space has

cardinality 𝔠.
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Graphs

Definition

Graph: pair (𝑉 ,𝐸) with 𝐸 ⊆ 𝑉 × 𝑉 .

Definition

Let 𝛼 be a cardinal. An 𝛼-colouring of a
graph (𝑉 ,𝐸) is a map 𝑐 ∶ 𝑉 → 𝛼 such

that ∀𝑣∀𝑤 ((𝑣, 𝑤) ∈ 𝐸 → 𝑐𝑣 ≠ 𝑐𝑤).

Definition

locally finite: every vertex has finitely

many neighbours.

Analogously: locally

countable, etc.

Definition

Elements of 𝑉 are called vertices,

elements of 𝐸 edges, and two vertices

𝑣, 𝑤 are adjacent if (𝑣, 𝑤) ∈ 𝐸. The set of
all vertices adjacent to 𝑣 is the
neighbourhood N𝑣 of 𝑣.

Definition

The chromatic number of a graph𝐺,
written 𝜒𝐺, is the unique smallest

cardinal 𝛼 such that𝐺 admits an

𝛼-colouring.
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Graphs

Definition

Borel graph:

graph (𝑉 ,𝐸) with 𝑉 a

Polish space and 𝐸 a Borel subset of

𝑉 × 𝑉 .

Definition

Borel colouring:

colouring where each

colour class is a Borel subset of 𝑉 .
For a Borel graph𝐺, the smallest

cardinal 𝛼 such that𝐺 admits a Borel

colouring is called its Borel chromatic

number, written 𝜒B𝐺.

𝛼

ℝ/ℤ𝛼 ∈ [0, 1)∖ℚ
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Projective Colourings

Definition

𝐴 ⊆ 𝑋 is analytic or Σ1
1 if it is continuous

image of 𝜔𝜔 (or any Polish space).

Definition

𝐴 ⊆ 𝑋 is Σ1
𝑛+1 if there is aΠ

1
𝑛 subset

𝐵 ⊆ 𝑋 × 𝜔𝜔 such that 𝐴 is the canonical

projection of 𝐵 onto𝑋.

Definition

𝐴 ⊆ 𝑋 is coanalytic orΠ1
1 if its

complement is analytic.

More generally, 𝐴 ⊆ 𝑋 isΠ1
𝑛 if its

complement is Σ1
𝑛.

Definition

𝐴 ⊆ 𝑋 is Δ1
𝑛 if it is bothΠ

1
𝑛 and Σ

1
𝑛.
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1
𝑛 subset

𝐵 ⊆ 𝑋 × 𝜔𝜔 such that 𝐴 is the canonical

projection of 𝐵 onto𝑋.

Definition

𝐴 ⊆ 𝑋 is coanalytic orΠ1
1 if its

complement is analytic.

More generally, 𝐴 ⊆ 𝑋 isΠ1
𝑛 if its

complement is Σ1
𝑛.

Definition

𝐴 ⊆ 𝑋 is Δ1
𝑛 if it is bothΠ

1
𝑛 and Σ

1
𝑛.
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Projective Colourings

Theorem (Suslin)

A set is Borel if and only if it is Δ1
1.
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Projective Colourings

Definition

Let P be a pointclass.

A graph (𝑉 ,𝐸) is
a P class graph (or P graph for short) if

𝑉 is a Polish space and 𝐸 is a P subset

of 𝑉 × 𝑉 .

Definition

Let P be a pointclass and 𝛼 a cardinal.

A

P class 𝛼-colouring (or P colouring for

short) is an 𝛼-colouring where each
colour class is a P subset of 𝑉 .

Of course

Let P,Q be pointclasses. If𝐺 is a P

class graph and P ⊆ Q, then𝐺 is aQ

class graph as well.

The same goes for

colourings.

Definition

Let P be a pointclass and𝐺 any graph.

The P class chromatic number of𝐺,
written 𝜒P𝐺, is the smallest cardinal 𝛼
such that𝐺 admits a P class colouring.
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Projective Colourings

Facts (easy)

Let P ∈ {Π,Σ,Δ }, 𝑛 ∈ ℕ> 0, and let𝐺
be any graph.

> 𝜒P1
𝑛
≥ 𝜒

> 𝜒P1
𝑛
≤ 𝜒𝐵

Question

What is the consistency strength of

∃𝐺 (𝜒𝐺 < 𝜒
Δ

1
2
𝐺 < 𝜒𝐵𝐺)?

What if𝐺must be a Borel graph?
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𝑛
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≤ 𝜒𝐵

Facts (advanced)

> both 𝜒
Δ

1
2
𝐺 ≤ 𝜒𝜇𝐺 and 𝜒

Δ
1
2
𝐺 ≥ 𝜒𝜇𝐺

are consistent with ZFC

> if 𝜒
Δ

1
2
𝐺 ≥ 𝛼 in a model𝑀 , then 𝛼 is a

lower bound for 𝜒
Δ

1
2
𝐺 in any generic

extension of𝑀
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∃𝐺 (𝜒𝐺 < 𝜒
Δ

1
2
𝐺 < 𝜒𝐵𝐺)?

What if𝐺must be a Borel graph?

9/13 Kobe Set Theory Seminar, October 15, 2025 Rayne Rettich Projective Colourings



Projective Colourings

Facts (easy)

Let P ∈ {Π,Σ,Δ }, 𝑛 ∈ ℕ> 0, and let𝐺
be any graph.

> 𝜒P1
𝑛
≥ 𝜒

> 𝜒P1
𝑛
≤ 𝜒𝐵

Facts (advanced)

> both 𝜒
Δ

1
2
𝐺 ≤ 𝜒𝜇𝐺 and 𝜒

Δ
1
2
𝐺 ≥ 𝜒𝜇𝐺

are consistent with ZFC

> if 𝜒
Δ

1
2
𝐺 ≥ 𝛼 in a model𝑀 , then 𝛼 is a

lower bound for 𝜒
Δ

1
2
𝐺 in any generic

extension of𝑀

Question

What is the consistency strength of

∃𝐺 (𝜒𝐺 < 𝜒
Δ

1
2
𝐺 < 𝜒𝐵𝐺)?

What if𝐺must be a Borel graph?

9/13 Kobe Set Theory Seminar, October 15, 2025 Rayne Rettich Projective Colourings



Projective Colourings

Facts (easy)

Let P ∈ {Π,Σ,Δ }, 𝑛 ∈ ℕ> 0, and let𝐺
be any graph.

> 𝜒P1
𝑛
≥ 𝜒

> 𝜒P1
𝑛
≤ 𝜒𝐵

Facts (advanced)

> both 𝜒
Δ

1
2
𝐺 ≤ 𝜒𝜇𝐺 and 𝜒

Δ
1
2
𝐺 ≥ 𝜒𝜇𝐺

are consistent with ZFC

> if 𝜒
Δ

1
2
𝐺 ≥ 𝛼 in a model𝑀 , then 𝛼 is a

lower bound for 𝜒
Δ

1
2
𝐺 in any generic

extension of𝑀

Question

What is the consistency strength of

∃𝐺 (𝜒𝐺 < 𝜒
Δ

1
2
𝐺 < 𝜒𝐵𝐺)?

What if𝐺must be a Borel graph?

9/13 Kobe Set Theory Seminar, October 15, 2025 Rayne Rettich Projective Colourings



Projective Colourings

Facts (easy)

Let P ∈ {Π,Σ,Δ }, 𝑛 ∈ ℕ> 0, and let𝐺
be any graph.

> 𝜒P1
𝑛
≥ 𝜒

> 𝜒P1
𝑛
≤ 𝜒𝐵

Facts (advanced)

> both 𝜒
Δ

1
2
𝐺 ≤ 𝜒𝜇𝐺 and 𝜒

Δ
1
2
𝐺 ≥ 𝜒𝜇𝐺

are consistent with ZFC

> if 𝜒
Δ

1
2
𝐺 ≥ 𝛼 in a model𝑀 , then 𝛼 is a

lower bound for 𝜒
Δ

1
2
𝐺 in any generic

extension of𝑀

Question

What is the consistency strength of

∃𝐺 (𝜒𝐺 < 𝜒
Δ

1
2
𝐺 < 𝜒𝐵𝐺)?

What if𝐺must be a Borel graph?

9/13 Kobe Set Theory Seminar, October 15, 2025 Rayne Rettich Projective Colourings



Well-Ordered Spaces
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Well-Ordered Spaces

Theorem (R., Serafin)

Let 𝑛 ∈ ℕ, 𝑛 ≥ 2, and let P ∈ {Δ,Π,Σ }. In a model of ZFC in which there is a P1
𝑛

well-order of 𝜔𝜔 (and hence of any Polish space), for any locally countable P1
𝑛 class

graph𝐺 we have 𝜒P1
𝑛
𝐺 = 𝜒𝐺.
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Well-Ordered Spaces

Proof.

> 𝑉 well-ordered by⪯
> :𝑣�� conn. comp. of 𝑣
> 𝐶𝑣 ∋ { (𝑥, 𝑛) ∶ 𝑥 ∈ ,.𝑣uniq�� 𝑛 ∈ 𝜔 }
> 𝐶𝑣 well-ordered by⊑
> 𝑎 ∈ 𝐶𝑣 is a 𝑣-palette if:

> ∀𝑥 ∈ 𝑣�� (∃𝑛 ∈ 𝜔 ((𝑥, 𝑛) ∈ 𝑎).
> ∀𝑥 ∈ 𝑣∀𝑛�� ∈ 𝜔

((𝑥, 𝑛) ∈ 𝑎 → ∀𝑦 ∈ N𝑥 ((𝑦, 𝑛) ∉ 𝑎)).
> 𝑪𝑣 is the⊑-least 𝑣-palette
> 𝑪 ≔ {𝑪𝑣 ∶ 𝑣 ∈ 𝑉 }

Proof.
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𝐶𝑣 ≔ {𝑎 ∶ 𝑎 ⊆ 𝑣�� × 𝜔,

𝜔��𝑣 is a Polish space well-ordered by⊑.
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∀𝑣 ∈ 𝑣∀𝑛�� ∈ 𝜔
((𝑣, 𝑛) ∈ 𝑎 → ¬∃𝑚 ∈ 𝜔
(𝑛 ≠ 𝑚 ∧ (𝑣,𝑚) ∈ 𝑎))}

𝜔��𝑣 is a Polish space well-ordered by⊑.
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𝜔��𝑣 is a Polish space well-ordered by⊑.
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((𝑣, 𝑛) ∈ 𝑎 → ¬∃𝑚 ∈ 𝜔
(𝑛 ≠ 𝑚 ∧ (𝑣,𝑚) ∈ 𝑎))}

⊆ 𝜔��𝑣 = 𝜔 × 𝜔 ×…

𝜔��𝑣 is a Polish space well-ordered by⊑.
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Well-Ordered Spaces

Proof.

> 𝑉 well-ordered by⪯
> :𝑣�� conn. comp. of 𝑣
> 𝐶𝑣 ∋ { (𝑥, 𝑛) ∶ 𝑥 ∈ ,.𝑣uniq�� 𝑛 ∈ 𝜔 }
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> ∀𝑥 ∈ 𝑣∀𝑛�� ∈ 𝜔

((𝑥, 𝑛) ∈ 𝑎 → ∀𝑦 ∈ N𝑥 ((𝑦, 𝑛) ∉ 𝑎)).
> 𝑪𝑣 is the⊑-least 𝑣-palette
> 𝑪 ≔ {𝑪𝑣 ∶ 𝑣 ∈ 𝑉 }

Proof.
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> 𝑪𝑣 is the⊑-least 𝑣-palette
> 𝑪 ≔ {𝑪𝑣 ∶ 𝑣 ∈ 𝑉 }

Proof.

define new well-order⊑ on 𝐶𝑣 by

stratification over the second

coordinate:

𝑎 ⊏ 𝑏 if and only if the lowest upper
bound on 𝜋2𝑎 is strictly smaller than that

on 𝜋2𝑏 or if they are equal but 𝑎 ⊏ 𝑏.
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((𝑥, 𝑛) ∈ 𝑎 → 𝑛 ≤ 𝜅)
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𝑎 ∈ 𝐶𝑣 is a 𝑣-palette if:
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((𝑥, 𝑛) ∈ 𝑎 → ∀𝑦 ∈ N𝑥 ((𝑦, 𝑛) ∉ 𝑎)).
Know:

> classical ℵ0-colouring of𝐺 restricted

to 𝑣�� is a 𝑣-palette
> by assumption, at least one such

colouring exists→ every vertex has

at least one palette
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Know:
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set of all 𝑣-palettes is a P1
𝑛 subset of

𝐶𝑣.
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> ∀𝑥 ∈ 𝑣∀𝑛�� ∈ 𝜔

((𝑥, 𝑛) ∈ 𝑎 → ∀𝑦 ∈ N𝑥 ((𝑦, 𝑛) ∉ 𝑎)).

> 𝑪𝑣 is the⊑-least 𝑣-palette
> 𝑪 ≔ {𝑪𝑣 ∶ 𝑣 ∈ 𝑉 }

Proof.

define𝑪𝑣 to be the⊑-least 𝑣-palette.

identify𝑪 ≔ {𝑪𝑣 ∶ 𝑣 ∈ 𝑉 } with 𝑉 in the

natural way, turning it into a Polish

space.
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> 𝜑̄ ∶ 𝑉 × 𝑉 → 𝑉 × 𝑉 , (𝑣, 𝑤) ↦ (𝑣, 𝜑𝑤)
> 𝑝 ∶ 𝑉 → 𝑪, 𝑣 ↦ 𝑪𝑣

> ̄𝑝 ∶ 𝑉 × 𝑉 → 𝑉 ×𝑪, (𝑣, 𝑤) ↦ (𝑣, 𝑝𝑤)
> 𝑚 ∶ 𝑉 ×𝑪 → 𝜔 + 1maps (𝑥,𝑪𝑣) to

the unique 𝑛 s.t. (𝑥, 𝑛) ∈ 𝑪𝑣 or to 𝜔 if

no such 𝑛 exists

> 𝑐 ≔ 𝑚 ̄𝑝𝜑̄𝑑 ∶ 𝑉 → 𝜔 + 1
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Summary

Theorem (R., Serafin)

Let 𝑛 ∈ ℕ, 𝑛 ≥ 2, and let P ∈ {Δ,Π,Σ }. In a model of ZFC in which there is a P1
𝑛

well-order of 𝜔𝜔 (and hence of any Polish space), for any locally countable P1
𝑛 class

graph𝐺 we have 𝜒P1
𝑛
𝐺 = 𝜒𝐺.

Theorem (R., Serafin)

Let P ∈ {Δ1
2,Σ1

2 }. In a model of ZFC in which there is a P well-order of 𝜔𝜔 (and hence

of any Polish space), for any P class graph𝐺 we have 𝜒P𝐺 = 𝜒𝐺.

Conjecture

Let𝐺 be any Borel graph. In any model of ZFC+PD, we have 𝜒
Δ

1
2
𝐺 ∈ {𝜒𝐺,𝜒𝐵𝐺}.
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Summary

Question

Is there a model where a Borel graph𝐺 exists with 𝜒𝐺 < 𝜒
Δ

1
2
𝐺 < 𝜒𝐵𝐺? If so, what is

the consistency strength of the existence of such a graph?
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